• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 8 Issue 1
Mar.  2020
Turn off MathJax
Article Contents
Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip. 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand. Journal of Groundwater Science and Engineering, 8(1): 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
Citation: Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip. 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand. Journal of Groundwater Science and Engineering, 8(1): 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002

Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand

doi: 10.19637/j.cnki.2305-7068.2020.01.002

Yacob T Tesfaldet

  • Publish Date: 2020-03-28
  • Whether groundwater resources can be sustainably utilized is largely determined and characterized by hydrogeological parameters. Estimating the groundwater recharge is one of the essential parameters for managing water resources and protecting water resources from contamination. This study researched the spatial and temporal variation of groundwater recharge in the Thepkasattri sub-district through integrating chloride mass balance (CMB) and water table fluctuation (WTF) methods. The chloride content of representative rainfall and groundwater samples was analyzed. Besides, WTF method was adopted from groundwater level data from 2012 to 2015. According to the CMB method, the mean recharge was estimated to be 1 172 mm per year, accounting for 47% of the annual rainfall. Moreover, the estimated recharge from the WTF method took 26% of annual rainfall in 2015. The recharge was underestimated according to the WTF method, because of the uncertainty in specific yield estimates and the number of representative wells in the study area. Moreover, the correlation between rainfall and water table fluctuation data indicated the positive linear relationship between two parameters. The spatial recharge prediction indicated that recharge was higher (1 200-1 400 mm/yr) in the eastern and western catchment, while that in the central floodplains was between 800 mm/yr and 1 100 mm/yr. In addition, low recharge value between 450 mm/yr and 800 mm/yr was observed in the south-west part of Thepkasattri. The spatial variation of recharge partly reflects the influences of land use and land cover of the study area.
  • 加载中
  • Hummel C L, Phawandon P. 1967. Geology and mineral deposits of the Phuket mining district, South Thailand.
    Yidana S M, Koffie E. 2014. The groundwater recharge regime of some slightly metamorphosed Neoproterozoic sedimentary rocks: An application of natural environmental tracers. Hydrological Processes, 28(7): 3104–3117.
    Ritorto M. 2007. Imapacts of diffuse recharge on transmissivity and water budget. USA: University of Florida.
    Tesfaldet Y T, Puttiwongrak A. 2019. Seasonal groundwater recharge characterization using time-lapse electrical resistivity tomography in the Thepkasattri Watershed on Phuket Island, Thailand. Hydrology, 6(2): 1-15.
    Wood W W 1999. Use and misuse of the Chloride-Mass Balance Method in estimating groundwater recharge. Ground Water, 37(1): 1-4.
    Scanlon B R, Healy R W, Cook P G. 2002. Choosing appropriate technique for quantifying groundwater recharge. Hydrogeology Journal, 10(1): 18-39.
    Grynkiewicz M, Polkowska Z, Zygmunt B, et al. 2003. Atmospheric precipitation sampling for analysis. Polish Journal of Environmental Studies, 12(2): 133-140.
    Mensah F O, Alo C, Yidana S M. 2014. Evaluation of groundwater recharge estimates in a partially metamorphosed sedimentary basin in a tropical environment: Application of natural tracers. The Scientific World Journal, 2014(10.1155): 1-8.
    Jayawickreme D H, Van Dam R L, Hyndman D W. 2008. Subsurface imaging of vegetation, climate, and root-zone moisture interactions. Geophysical Research Letters, 35(18): 1-5.
    Somaratne N, Smettem K R J. 2014. Theory of the generalized chloride mass balance method for recharge estimation in groundwater basins characterised by point and diffuse recharge. Hydrology and Earth System Sciences, 11(1): 307-332.
    Healy R W. 2012. Estimating groundwater recharge. United Kingdom: Cambridge University Press (First edition).
    Afrifa G Y, Sakyi P A, Chegbeleh L P. 2017. Estimation of groundwater recharge in sedimentary rock aquifer systems in the Oti basin of Gushiegu District, Northern Ghana. Journal of African Earth Sciences, 131: 272-283.
    Charoenpong S, Suwanprasit C, Thongchumnum P. 2012. Impacts of interpolation techniques on groundwater potential modeling using GIS in Phuket Province, Thailand. 33rd Asian Conference on Remote Sensing (ACRS): 732–738.
    Healy R W, Cook P G. 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(1): 91-109.
    Aishlin P S. 2006. Groundwater recharge estimation using chloride mass balance dry creek experimental watershed. USA: Boise State University.
    Saghravani S R, Yusoff I, Wan Md Tahir W Z, et al. 2015. Estimating recharge based on long-term groundwater table fluctuation monitoring in a shallow aquifer of Malaysian tropical rainforest catchment. Environmental Earth Sciences, 74(6): 4577-4587.
    Johnson A I. 1963. Specific Yield-Compilation of Specific Yield for Various Materials. Washington: United States Government printing Office.
    Hagedorn B, El-Kadi A I, Mair A, et al. 2011. Estimating recharge in fractured aquifers of a temperate humid to semiarid volcanic island (Jeju, Korea) from water table fluctuations, and Cl, CFC-12 and 3H chemistry. Journal of Hydrology, 409(3-4): 650-662.
    Blarasin M, F Quinodoz, A Cabrera, et al. 2016. Weekly and monthly groundwater recharge estimation in a rural piedmont environment using the water table fluctuation method. International Journal of Environmental & Agriculture Research, 2(5): 104-113.
    U.S. Geological Survey. 2015. National field manual for the collection of water quality data. Techniques of Water Resources Investigations.
    Kong S O. 2017. Hydrogeological characterization of Phuket aquifer system with reference to groundwater development of Phuket, Thailand. Thailand: Prince Songkla University.
    Tirado R, Englande A J, Promakasikorn L, et al. 2008. Use of agrochemicals in Thailand and its consequences for the environment. In Greenpeace Research Laboratories Technical Note 03/2008.
    Delin G N, Healy R W, Lorenz D L, et al. 2007. Comparison of local to regional-scale estimates of groundwater recharge in Minnesota, USA. Journal of Hydrology, 334(1-2): 231-249.
    Saghravani S R, Yusoff I, Wan Md Tahir W Z, et al. 2014. Comparison of water table fluctuation and chloride mass balance methods for recharge estimation in a tropical rainforest climate: A case study from Kelantan River catchment, Malaysia. Environmental Earth Sciences, 73(8): 4419-4428.
    Ministry of Agriculture and Cooperatives. 2011. Reference crop evapotranspiration penman monteith.
    Wood W W, Sanford W E. 1995. Chemical and isotopic methods for quantifying groundwater recharge in a regional, semiarid environment. Ground Water, 33(3): 458-468.
  • Relative Articles

    [1] Guo Jin-xing, Li Zhi-ping, Stefan Catalin, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [2] Nasiri Shima, Ansari Hossein, Ziaei Ali Naghi, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [3] Gautam Vinay Kumar, Kothari Mahesh, Singh P.K., Bhakar S.R., Yadav K.K., 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] Shahbaz Akhtar M, Nakashima Yoshitaka, Nishigaki Makoto, 2021: Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201.  doi: 10.19637/j.cnki.2305-7068.2021.03.002
    [5] Zhang Han, Chen Zong-yu, Tang Chang-yuan, 2021: Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232.  doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [6] ZHOU Hao, WU Yong, HUANG Feng, TANG Xue-fang, 2021: Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72.  doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [7] YANG Liu, ZHANG Ying-ping, WEN Xue-ru, PEI Li-xin, LIU Bing, 2020: Characteristics of groundwater and urban emergency water sources optimazation in Luoyang, China, Journal of Groundwater Science and Engineering, 8, 298-304.  doi: 10.19637/j.cnki.2305-7068.2020.03.010
    [8] Terrazas-Salvatierra Jhim, Munoz-Vásquez Galo, Romero-Jaldin Ana, 2020: Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone, Journal of Groundwater Science and Engineering, 8, 223-229.  doi: 10.19637/j.cnki.2305-7068.2020.03.003
    [9] SAMI Guellouh, ABDELWAHHAB Filali, Med ISSAM Kalla, 2020: Estimation of the peak flows in the catchment area of Batna (Algeria), Journal of Groundwater Science and Engineering, 8, 79-86.  doi: 10.19637/j.cnki.2305-7068.2020.01.008
    [10] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [11] ZHANG Han-xiong, HU Xiao-nong, 2018: Simulation and analysis of Chloride concentration in Zhoushan reclamation area, Journal of Groundwater Science and Engineering, 6, 150-160.
    [12] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze, 2017: Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [13] LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei, 2016: Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid, Journal of Groundwater Science and Engineering, 4, 81-87.
    [14] WANG Ying, CHEN Zong-yu, 2016: Responses of groundwater system to water development in northern China, Journal of Groundwater Science and Engineering, 4, 69-80.
    [15] NAN Tian, SHAO Jing-li, CUI Ya-li, 2016: Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [16] WANG Shi-qin, SONG Xian-fang, WEI Shou-cai, SHAO Jing-li, 2016: Application of HYDRUS-1D in understanding soil water movement at two typical sites in the North China Plain, Journal of Groundwater Science and Engineering, 4, 1-11.
    [17] ZHOU Yang-xiao, Parvez Sarwer Hossain, Nico van der Moot, 2015: Analysis of travel time, sources of water and well protection zones with groundwater models, Journal of Groundwater Science and Engineering, 3, 363-374.
    [18] HE Hong, GUO Hong-bin, LIU Hong-yun, 2014: Analysis of effect of water construction in different phases on groundwater environment, Journal of Groundwater Science and Engineering, 2, 54-59.
    [19] HAN Mei, JIA Na, LI Ke, ZHAO Guo-xing, LIU Bing-bing, LIU Sheng-hua, LIU Jie, 2014: Analysis of bromate and bromide in drinking water by ion chromatography-inductively coupled plasma mass spectrometry, Journal of Groundwater Science and Engineering, 2, 48-53.
    [20] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (611) PDF downloads(294) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint