• ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 8 Issue 2
Jun.  2020
Turn off MathJax
Article Contents
KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, et al. 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria. Journal of Groundwater Science and Engineering, 8(2): 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007
Citation: KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, et al. 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria. Journal of Groundwater Science and Engineering, 8(2): 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007

Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria

doi: 10.19637/j.cnki.2305-7068.2020.02.007


  • To some extent, the sedimentary sequence with the largest groundwater reserves in northern Sahara is marked by a certain water table level, regionally known as the “Continental Intercalaire” (CI). “Continental Intercalaire” (CI) refers to “Continental Intercalar” widely distributed among three countries. Algeria, Tunisia and Libya, which have significant potential of water resources. As it is the only water resource relatively easily accessible to the inhabitants of the Sahara, it is widely developed. The physico-chemical characteristics of statistical processing in principal component analysis (PCA) and the chemical phase measurement of groundwater in the unconfined aquifer captured by “Foggaras” (traditional system irrigation composed of well system linked by a horizontal channel from their bases) and the deep drillings located in the study area were accessible. Therefore, there were some favorable conditions for comparing the chemistry of these waters with the standards of potability established by the World Health Organization. Then, the study detected the origin of excessive mineralization and the excessive content of Na, Cl, K, Mg and Ca that originated from the leaching of the clay and carbonate layers of the “Continental Intercalaire”. In addition, the enrichment in NO2-, NO3- and SO42- was due to the excessive use of fertilizer in the whole region for shallower Foggaras waters, and this study also showed the dominant chemical facies of groundwater related to the significant abundance of these mineral salts in this thick aquifer horizon.
  • 加载中
  • Chkir N, Guendouz A, Zouari K, et al. 2009. Uranium isotopes in groundwater from the continental intercalaire aquifer in Algerian Tunisian Sahara (Northern Africa). Journal of Environmental Radioactivity, 100(8): 649-656. https://doi.org/10.1016/j.jenvrad.2009.05.009.
    Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6): 417-441. http://doi.org/10.1037/h0071325.
    OSS (Observatoire du Sahara et du Sahel). 2003. Sahara and sahel observatory. Aquifer system of the Northern Sahara. Joint management of a transboundary basin. Synthesis Report 1st edition.
    Pearson K. 1901. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11): 559-572. https://
    Kendouci MA, Bendida A, Khelfaoui R, et al. 2013. The impact of traditional irrigation (Foggara) and modern (drip, pivot) on the resource non-renewable groundwater in the Algerian Sahara. Energy Procedia, 36: 154-162. https://doi.org/10.1016/j.egypro.2013.07.018.
    GUO Xiao-yan, FENG Qi, SI Jian-hua, et al. 2019. Partitioning groundwater recharge sources in multiple aquifers system within a desert oasis environment: Implications for water resources management in endorheic basins. Journal of Hydrology, 579: 124212. https://doi.org/10.1016/j.jhydrol.2019.124212.
    Hamed Y, Ahmadi R, Hadji R, et al. 2014. Groundwater evolution of the Continental Intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: Use of geochemical and isotopic indicators. Desalination and Water Treatment, 52(10-12): 1990-1996. https://doi.org/10.1080/19443994.2013.806221.
    World Health Organization (WHO). 2011. Guidelines for drinking-water quality. Fourth edition,ISBN 978 92 4 154815 1.
    Lefranc JP, Guiraud R. 1990. The continental intercalaire of northwestern Sahara and its equivalents in the neighbouring regions. Journal of African Earth Sciences (and the Middle East), 10(1-2): 27-77. https://doi.org/10.1016/0899-5362(90)90047-I.
    Busson G, Cornée A. 1991. The Sahara from the Middle Jurassic to the Middle Cretaceous: Data on environments and climates based on
    simulations of stable isotopes: Case study of the Saharan “Continental Intercalaire”. Journal of Hydrology, 531(3): 821-829. https://doi.org/10.1016/j.jhydrol.2015.10.044.
    Remini B, Abidi SN. 2019. The foggara of Tindouf (Algeria): A hydraulic heritage declined. Larhyss Journal, 39: 215-228.
    OSS (Observatoire du Sahara et du Sahel). 2008. Sahara and sahel observatory. Aquifer system of the Northern Sahara. Concerted management of a transboundary basin. Synthesis collection n°1.
    Edmunds WM, Guendouz AH, Mamou A, et al.2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Applied Geochemistry, 18(6): 805-822. https://doi.org/10.1016/S0883-2927(02)00189-0.
    Boutadra Y, Remini B, Saida B. 2018. The foggaras of Bouda (Algeria): From drought tofood. Applied Water Science, 8: 162. https://doi.org/10.1007/s13201-018-0822-7.
    WANG Ping, YU Jing-jie, ZHANG Yi-chi, et al. 2013. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. Journal of Hydrology, 476(7): 72-86. doi:  http://dx.doi.org/10.1016/j.jhydrol.2012.10.049.
    Idder T, Idder A, Tankari D A, et al. 2014. The oases of the Algerian Sahara, between hydric excess and salinity example of the oasis of Ouargla. Revue des Sciences de l’Eau, 27(2) :155-164. doi: https://doi.org/10.7202/1025565ar.
    Remini B, Achour B. 2016. The water supply of oasis by Albian foggara: An irrigation system in degradation. Larhyss Journal, 26: 167-181.
    Piper A. 1944. A graphic procedure in the geochemical interpretation of water analyses. Transactions, American Geophysical Union, 25(6): 914-928. http://dx.doi.org/10.1029/
    Kadis R, Leito I. 2010. Evaluation of the residual liquid junction potential contribution to the uncertainty in pH measurement: A case study on low ionic strength natural waters. Analytica Chimica Acta, 664(2): 129-135. https://doi.org/10.1016/j.aca.2010.02.007.
    Petersen JO, Deschamps P, Gon?alvès J, et al. 2014. Quantifying paleorecharge in the Continental Intercalaire (CI) aquifer by a Monte-Carlo inversion approach of 36Cl/Cl data. Applied Geochemistry, 50: 209-221. https://doi.org/10.1016/j.apgeochem.2014.04.014.
    Dhaoui Z, Zouari K, Taupin JD, et al. 2016. Hydrochemical and isotopic investigations as indicators of recharge processes of the Continental Intercalaire aquifer (eastern piedmont of Dahar, southern Tunisia). Environmental Earth Sciences, 75: 1186. doi.10.1007/s12665-016-5990-x.
    outcrops in the Algerian Sahara. Journal of African Earth Sciences (and the Middle East), 12(1-2): 85-105. https://doi.org/10.1016/0899-5362(91)90060-C.
    Marshall G, Jonker L. 2010. An introduction to descriptive statistics: A review and practical guide. Radiography, 16(4): e1-e7. https://doi.org/10.1016/j.radi.2010.01.001.
    Lachache S, Nabou M, Merzouguui T, et al. 2018. Hydro-chemistry and origin of principal major elements in the groundwater of the Bechar-Kenadsa basin in arid zone, South-West of Algeria. Journal of Water and Land Development, 36 (I-III): 77-87. doi: 10.2478/
    Gon?alvès J, Vallet-Coulomb C, Petersen J, et al. 2015. Declining water budget in a deep regional aquifer assessed by geostatistical
    Newell AJ, Kirby GA, Sorensen JPR, et al. 2015. The cretaceous continental intercalaire in central Algeria: Subsurface evidence for a fluvial to aeolian transition and implications for the onset of aridity on the Saharan Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 438(15): 146-159. https://doi.org/10.1016/j.palaeo.2015.07.023.
    Remini B, Achour B, Albergel J. 2015. The qanat of Algerian Sahara: An evolutionary hydraulic system. Applied Water Sciences, 5(4): 359-366. https://doi.org/10.1007/s13201-014-0195-5.
    Moulla AS, Guendouz A, Cherchali ME, et al.2012. Updated geochemical and isotopic data from the Continental Intercalaire aquifer in the Great Occidental Erg sub-basin (south western Algeria). Quaternary International,257(20): 64-73. https://doi.org/10.1016/j.quaint.2011.08.038.
    Ouali S, Bena?ssa Z, Belhamel M, et al. 2011. Exploitation of albian geothermal water in South Algeria. Energy Procedia, 6: 101-109. https://doi.org/10.1016/j.egypro.2011.05.012.
  • [1] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [2] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [3] LI Yang, KANG Feng-Xin, ZOU An-de, 2019: Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154.
    [4] LI Xiao-hang, WANG Rui, LI Jian-feng, 2018: Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [5] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [6] ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [7] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan, 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [8] Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [9] Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [10] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [11] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [12] ZHAI Yuan-zheng, JIANG Shi-jie, TENG Yan-guo, WANG Jin-sheng, GU Hong-biao, XIE Liang, YIN Zhi-hua, 2015: Thirty years (1984-2014) of groundwater science teaching and research in China: A dissertation-based bibliometric survey, Journal of Groundwater Science and Engineering, 3, 222-237.
    [13] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [14] XU Guang-ming, QI Jian-feng, BI Pan, BAI Gao-feng, 2015: Distribution and evolution features of salinized soil in Hebei Plain, Journal of Groundwater Science and Engineering, 3, 21-29.
    [15] GONG Jian-shi, ZHU Chun-fang, YE Nian-jun, WANG He-sheng, ZHOU Kai-e, HOU Li-li, 2014: Experimental study of impact of a certain polluted river on groundwater along river bank in Southeast China, Journal of Groundwater Science and Engineering, 2, 8-16.
    [16] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU, 2014: Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [17] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [18] Jingli Shao, Yali Cui, Yunzhang Zhao, 2013: A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
    [19] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu, 2013: Urban Waste Disposal and Its Impact on Groundwater Pollution in China, Journal of Groundwater Science and Engineering, 1, 88-95.
    [20] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (182) PDF downloads(90) Cited by()
    Proportional views

    Submission system is out of service now, please submit to our email: gwse-iheg@188.com, hope your understanding!



    DownLoad:  Full-Size Img  PowerPoint