• ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 8 Issue 3
Sep.  2020
Turn off MathJax
Article Contents
Terrazas-Salvatierra Jhim, Munoz-Vásquez Galo, Romero-Jaldin Ana. Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone[J]. Journal of Groundwater Science and Engineering, 2020, 8(3): 223-229. doi: 10.19637/j.cnki.2305-7068.2020.03.003
Citation: Terrazas-Salvatierra Jhim, Munoz-Vásquez Galo, Romero-Jaldin Ana. Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone[J]. Journal of Groundwater Science and Engineering, 2020, 8(3): 223-229. doi: 10.19637/j.cnki.2305-7068.2020.03.003

Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone

doi: 10.19637/j.cnki.2305-7068.2020.03.003
More Information
  • Corresponding author: Jhim Terrazas-Salvatierra, E-mail: deynor@hotmail.com
  • Received Date: 2019-11-06
  • Accepted Date: 2020-02-19
  • Publish Date: 2020-09-01
  • The Rocha River is a receptor to receive wastewater from household, hospital and industry, from where contaminants are transported in the river, affecting biodiversity and the ecosystem of the area. In this paper we estimated the maximum transport of total chromium and chloride anion by applying the analytical model of Ogata & Banks (1961), and the results obtained are grouped into three zones: Contaminated, transition, and uncontaminated. The analytical model was applied with 13 samples collected from the river piezometers installed near Rocha, where they are arranged in two lines, i.e. RH-1 to RH-6 as the first line and RH-9 to RH-12 as the second line. The total chromium concentrations range from 0.16 mg/L (RH-1) and 0.11 mg/L (RH-9) at the closest points to Rocha River, to 0.13 mg/L (RH-7) and 0.03 mg/L (RH-12) at the most remote points to the river. The advance of the pollutants does not exceed 50 meters with respect to the axis of the Rocha River.
  • 加载中
  • [1]
    Anderson MP. 1979. Using models to simulate the movement of contaminates through groundwater flow system. CRC Critical Reviews in Environmental Control, 9(2): 97-156.
    [2]
    Crank J. 1956. The mathematics of diffusion. New York: Oxford University Press.
    [3]
    Dundar MS, Altundag H. 2006. Investigation of heavy metal contaminations in the lower Sakarya river water and sediments. Sakarya University, Environmental Monitoring Assess-ment, 128: 177-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59e7f5448adf5035b2b4c3087b7b3aed
    [4]
    Faust CR, Mercer JW. 1980. Groundwater modeling: Recent developments. Ground Water, 18(6): 569-77. doi:  10.1111/j.1745-6584.1980.tb03651.x
    [5]
    Fetter CW. 2001. Applied hydrogeology. Fourth Edition. Prentice-Hall.
    [6]
    Fetter CW. 1999. Contaminant hydrogeology. Second Edition. Prentice-Hall.
    [7]
    Fetter CW. 1994. Applied hydrogeology. Third Edition. Prentice-Hall.
    [8]
    Fetter CW. 1977. Attenuation of waste water elutriated through glacial outwash. Ground Water, 15(5): 365-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1745-6584.1977.tb03181.x
    [9]
    HUANG Yong, WANG Ping, FU Zhi-min, et al. 2019. Experimental and numerical research on migration of LNAPL contaminants in fractured porous media. Hydrogeology Journal, 28: 1269-1284. https://doi.org/10.1007/s10040-020-02118-w doi:  10.1007/s10040-020-02118-w
    [10]
    Hvorslev MJ. 1951. Time lag and soil permeability in ground water observations. U.S. Army Corps of Engineers Water-way Experi-mentation Station, Bulletin 36.
    [11]
    Kavouri KP, Karatzas GP, Plagnes V. 2017. A coupled groundwater flow-modelling and vulnerability-mapping methodology for karstic terrain management. Hydrogeology Journal, 25(5): 1301-1317. https://doi.org/10.1007/s10040-017-1548-6 doi:  10.1007/s10040-017-1548-6
    [12]
    LI An, Tsai FTC, Yuill BT, et al. 2020. A three-dimensional stratigraphic model of the Mississippi River Delta, USA: Implications for river deltaic hydrogeology. Hydrogeology Journal. https://doi.org/10.1007/s10040-020-02198-8 10.1007/s10040-020-02198-8
    [13]
    Maldonado M, Van Damme P, Rojas J. 1998. Pollution and eutrophication in the Rocha river basin. Bolivian Journal of Ecology and Environmental, 3: 3-9.
    [14]
    Malott S, O'Carroll DM, Robinson CE. 2016. Dynamic groundwater flows and geochemistry in a sandy nearshore aquifer over a wave event. Water Resource Research, 52(7): 5248-5264. https://doi.org/10.1002/2015wr017537 doi:  10.1002/2015wr017537
    [15]
    Ogata A. 1970. Theory of dispersion in a granular medium. U.S. Geological Survey Professional Paper 411-I.
    [16]
    Ogata A, Banks RB. 1961. Solution of the differential equation of longitudinal dispersion in porous media. US. Geological Survey Professional Paper 411-A.
    [17]
    Prickett TA, Naymik CT, Lonnquist CG. 1981. A "random walk" solute transport model for selected ground-water quality evaluations. Illinois State Water Survey, Bulletin 65: 103. http://hdl.handle.net/2142/94526
    [18]
    Romero AM, Vandecasteele C, Cooreman H. 2000. Metals (Cr, Pb, and Zn) in sediments and chironomids of the Rocha river. Bolivian Jour-nal of Ecology and Environmental, 8: 37-47.
    [19]
    Sefelnasr A, Gossel W, Wycisk P. 2014. Three-dimensional groundwater flow modeling approach for the groundwater management options for the Dakhla Oasis, Western Desert, Egypt. Environmental Earth Sciences, 72(4): 12227-122241. https://doi.org/10.1007/s12665-013-3041-4 doi:  10.1007/s12665-013-3041-4
    [20]
    Sookhak LK, Johnston CD, Rayner JL, et al. 2018. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials. Journal of Hazard Material, 345: 87-96.https://doi.org/10.1016/j.jhazmat.2017.11.006 doi:  10.1016/j.jhazmat.2017.11.006
    [21]
    Sookhak LK, Rayner JL, Davis GB. 2018b. Towards characterizing LNAPL remediation endpoints. J Environ Manag, 224: 97-105. https://doi.org/10.1016/j.jenvman.2018.07.041 doi:  10.1016/j.jenvman.2018.07.041
    [22]
    Sookhak LK, Davis GB, Rayner JL, et al. 2019a. Natural source zone depletion of LNAPL: A critical review supporting modelling appro-aches. Water Resource Research, 157: 630-646.https://doi.org/10.1016/j.watres.2019.04.001 doi:  10.1016/j.watres.2019.04.001
    [23]
    Sookhak LK, Rayner JL, Davis GB. 2019b. Toward optimizing LNAPL remediation. Water Resour Research, 55(2): 923-936. https://doi.org/10.1029/2018wr023380 doi:  10.1029/2018wr023380
    [24]
    Srinivasan P, Mercer JW. 1988. Simulation of biodegradation and sorption processes in ground wáter. Ground Water, 26(4): 475-487. doi:  10.1111/j.1745-6584.1988.tb00414.x
    [25]
    Terrazas J. 2018. Potential non-point pollution index (PNPI) in the Rocha Basin. San Simón University (UMSS). http://hdl.handle.net/123456789/10984
  • [1] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA. Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco. Journal of Groundwater Science and Engineering, 2020, 8(2): 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [2] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani. Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS. Journal of Groundwater Science and Engineering, 2020, 8(1): 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [3] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique. Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer. Journal of Groundwater Science and Engineering, 2019, 7(4): 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [4] ZHANG Han-xiong, HU Xiao-nong. Simulation and analysis of Chloride concentration in Zhoushan reclamation area. Journal of Groundwater Science and Engineering, 2018, 6(2): 150-160.
    [5] CHENG Xu-xue, JIN Xiao-lin, LIU Wei-po. Study on functions and rational allocation of Shule River Basin groundwater resources. Journal of Groundwater Science and Engineering, 2017, 5(2): 140-151.
    [6] TIAN Xia, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, DUN Yu, GUO Chun-yan. Analysis on hydrochemical characteristics of groundwater in strongly exploited area in Hutuo River Plain. Journal of Groundwater Science and Engineering, 2017, 5(2): 130-139.
    [7] ZHOU Xun. Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China. Journal of Groundwater Science and Engineering, 2017, 5(4): 343-353.
    [8] WU Jian-qiang, WU Xia-yi. Geological environment impact analysis of a landfill by the Yangtze River. Journal of Groundwater Science and Engineering, 2016, 4(2): 96-102.
    [9] CUI Xiang-xiang, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song. Distribution and migration of lead in soil of Xiao River, Shijiazhuang, Hebei Province. Journal of Groundwater Science and Engineering, 2015, 3(1): 98-104.
    [10] DAI Wen-Bin, ZHANG Wei-Jun, COWEN Taha. An analysis of River Derwent pollution and its impacts. Journal of Groundwater Science and Engineering, 2015, 3(1): 39-44.
    [11] ZHANG Chuan-mian, GUO Xiao-niu, Richard Henry, James Dendy. Groundwater modelling to help diagnose contamination problems. Journal of Groundwater Science and Engineering, 2015, 3(4): 285-294.
    [12] SU Chen, XU Cheng-yun, CHEN Zong-yu, WEI wen. Comparison of hydrogeological characteristics between the Sanjiang Plain and the Amur River Basin. Journal of Groundwater Science and Engineering, 2014, 2(4): 26-34.
    [13] GONG Jian-shi, ZHU Chun-fang, YE Nian-jun, WANG He-sheng, ZHOU Kai-e, HOU Li-li. Experimental study of impact of a certain polluted river on groundwater along river bank in Southeast China. Journal of Groundwater Science and Engineering, 2014, 2(3): 8-16.
    [14] SHI Jian-sheng, LIU Chang-li, DONG Hua, YAN Zhen-peng, WANG Yan-jun, LIU Xin-hao, GUO Xiu-yan, JIAO Hong-jun, YIN Mi-ying, HOU Huai-ren. Stability assessment and risk analysis of aboveground river in lower Yellow River. Journal of Groundwater Science and Engineering, 2014, 2(4): 1-18.
    [15] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu. Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River. Journal of Groundwater Science and Engineering, 2013, 1(1): 82-88.
    [16] B.T. Hiller, N. Jadamba. Groundwater Use in the Selenge River Basin, Mongolia. Journal of Groundwater Science and Engineering, 2013, 1(1): 11-32.
    [17] Cui-ling Wang, Chang-li Liu, Ya-jie Pang, Li-xin Pei, Yun Zhang. Adsorption Behavior of Hexavalent Chromium in Vadose Zone. Journal of Groundwater Science and Engineering, 2013, 1(3): 83-88.
    [18] Zhao-xian Zheng, Xiao-si Su. Risk Assessment on Organic Contamination of Shallow Groundwater of an Oilfield in Northeast China. Journal of Groundwater Science and Engineering, 2013, 1(3): 75-82.
    [19] Zhao Wang, Jiansheng Shi, Zhaoji Zhang, Yuhong Fei. Organic Contamination of Soil and Goundwater in the Piedimont Plain of the Taihang Mountains. Journal of Groundwater Science and Engineering, 2013, 1(1): 74-81.
    [20] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner. Groundwater quality Management in China. Journal of Groundwater Science and Engineering, 2013, 1(1): 54-59.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (272) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return