• ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 8 Issue 3
Sep.  2020
Turn off MathJax
Article Contents
Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul. Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore[J]. Journal of Groundwater Science and Engineering, 2020, 8(3): 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006
Citation: Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul. Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore[J]. Journal of Groundwater Science and Engineering, 2020, 8(3): 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006

Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore

doi: 10.19637/j.cnki.2305-7068.2020.03.006
More Information
  • Corresponding author: Mohammad Tofayal Ahmed, E-mail: tofayal74@yahoo.com
  • Received Date: 2019-12-25
  • Accepted Date: 2020-03-19
  • Publish Date: 2020-09-01
  • Sagardari union is facing groundwater crisis because of contaminations from agriculture and urban sewage, which bring a considerable change in water quality. In view of this, hydro-chemical analyses were undertaken on 35 groundwater samples and the following hydro-geochemical parameters, pH, total dissolved solids (TDS), total hardness (TH), electrical conductivity (EC), cations and anions, were analyzed. From the analytical results, it is found that pH value was lower than WHO drinking water standard and the middle-downstream portions of the investigation region show higher EC. The piper plot indicates that the groundwater in Sagardari falls in the categories of NaClHCO3 hydro-chemical facies. Higher TH in groundwater was detected, but still in an acceptable range. In addition, salinity and arsenic ratio are higher and moderately higher, respectively. The spatial distribution of Groundwater Quality Index (GWQI) was determined by geo-statistical modelling of Sagardari union. The study provides information and supports the administration which to make better groundwater utilization and quality control in the Sagardari union.
  • 加载中
  • [1]
    Acharya S, Sharma S, Khandegar, et al. 2018. Assessment of groundwater quality by water quality indices for irrigation and drinking in South West Delhi, India. Data in Brief, 18: 2019-2028. doi:  10.1016/j.dib.2018.04.120
    [2]
    Ahmed MT, Hasan Md Yeasir, Khan Abu AS, et al. 2019. Valuation of irrigation water at Shagordari, Jashore, Bangladesh. International Research Journal of Engineering and Technology, 6(11): 1050-1057.
    [3]
    Al Tanjil H, Ahmed MT, Akter S, et al. 2019. Water quality assessment in Maddhapara Granite Mine, Bangladesh. International Journal of Environmental Protection and Policy, 7(2): 39. doi:  10.11648/j.ijepp.20190702.11
    [4]
    Alexandratos SD, Barak N, Bauer D, et al. 2019. Sustaining water resources: Environmental and economic impact. ACS Sustainable Chemistry & Engineering, 7(3): 2879-2888. http://cn.bing.com/academic/profile?id=e519fe8500c349257c5cf2fad6b267e8&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Ali MH, Abustan I, Rahman MA, et al. 2012. Sustainability of groundwater resources in the North-Eastern Region of Bangladesh. Water Resources Management, 26(3): 623-641. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e370df12a1470cd3e573d935e67f29b4
    [6]
    Annapoorna H, Janardhana MR. 2015. Assessment of groundwater quality for drinking purpose in rural areas surrounding a defunct copper mine. Aqutic Procedia, 4: 685-692. doi:  10.1016/j.aqpro.2015.02.088
    [7]
    Balachandar D, Sundararaj P, Murthy KR, et al. 2010. An investigation of groundwater quality and its suitability to irrigated agriculture in Coimbatore District, Tamil Nadu, India: A GIS approach. International Journal of Environment Sciences, 1(2): 176-190. http://cn.bing.com/academic/profile?id=e6c54a156700fc111fb9bb9e5e0e1d79&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Balan IN, Shivakumar M, Madan Kumar PD. 2012. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India. Chronicles of Young Scientists, 3(2): 146. doi:  10.4103/2229-5186.98688
    [9]
    Bhuiyan MAH, Dampare SB, Islam MA, et al. 2015. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environmental Monitoring and Assessment, 187(1): 4075. http://cn.bing.com/academic/profile?id=715b16fc12e30b694777c055038a30f3&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Biswas, Raman Roy, Dhiman Towfiqul Islam, et al. 2014. Assessment of drinking water related to arsenic and salinity hazard in Patuakhali district, Bangladesh. International Journal of Advanced Geosciences, 2(2): 82-85.
    [11]
    Bousser MG, Amarenco P, Chamorro A, et al. 2011. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): A randomised, double-blind, parallel-group trial. Lancet (London England), 377(9782): 2013-2022. doi:  10.1016/S0140-6736(11)60600-4
    [12]
    Chourasia LP. 2018. Assessment of ground-water quality using water quality index in and around Korba City, Chhattisgarh, India. American Journal of Software Engineering and Applications, 7: 15-21. doi:  10.11648/j.ajsea.20180701.12
    [13]
    DeSutter T, Franzen D, HE Yang-bo, et al. 2015. Relating sodium percentage to sodium adsorption ratio and its utility in the northern Great Plains. Soil Science Society of America Journal, 79(4): 1261-1264. doi:  10.2136/sssaj2015.01.0010n
    [14]
    Edet A, Offiong OE. 2002. Evaluation of water quality pollution indices for heavy metal contamination monitoring: A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). Geojournal, 57(4): 295-304. doi:  10.1023/B:GEJO.0000007250.92458.de
    [15]
    Farnham IM, Johannesson KH, Singh AK, et al. 2003. Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytica Chimica Acta, 490(1-2): 123-138. doi:  10.1016/S0003-2670(03)00350-7
    [16]
    Haque SE. 2018. An overview of groundwater quality in Bangladesh, groundwater of South Asia. Groundwater of South Asia, Springer: 205-232.
    [17]
    Haritash AK, Kaushik CP, Kaushik A, et al. 2008. Suitability assessment of groundwater for drinking, irrigation and industrial use in some North Indian villages. Environmetal Monitoring and Assessment, 145(1-3): 397-406. doi:  10.1007/s10661-007-0048-x
    [18]
    Hubbard R, Sheridan J. 1994. Nitrates in ground-water in the southeastern USA.
    [19]
    Iqbal MA, Gupta SG. 2009. Studies on heavy metal ion pollution of ground water sources as an effect of municipal solid waste dumping. African Journal of Basic & Applied Sciences, 1(5-6): 117-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002213110
    [20]
    Islam MA, Rahman Md M, Bodrud-Doza Md, et al. 2018. A study of groundwater irrigation water quality in south-central Bangladesh: A geo-statistical model approach using GIS and multivariate statistics. Acta Geochimica, 37(2): 193-214. doi:  10.1007/s11631-017-0201-3
    [21]
    Islam M, Marandi A, Fatema S, et al. 2019. The evolution of the groundwater quality in the alluvial aquifers of the south-western part of Bengal Basin, Bangladesh. Environmental Earth Sciences, 78(24): 705. doi:  10.1007/s12665-019-8714-1
    [22]
    Joarder MAM, Raihan F, Rahman Md T, et al. 2008. Regression analysis of ground water quality data of Sunamganj District, Bangladesh. International Journal of Environmental Research, 2(3): 291-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001967560
    [23]
    Kadyampakeni D, Appoh R, Barron J, et al. 2017. Analysis of water quality of selected irrigation water sources in northern Ghana. Water Science and Technology: Water Supply, 18(4): 1308-1317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f1839d42122cb4cb235b2e832472a46
    [24]
    Kawo NS, Karuppannan S. 2018. Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences, 147: 300-311. doi:  10.1016/j.jafrearsci.2018.06.034
    [25]
    Kumar PJ Sajil. 2013. Interpretation of ground-water chemistry using piper and Chadha's diagrams: A comparative study from Perambalur Taluk. Elixir Geosciences, 54: 12208-12211.
    [26]
    LI Yu, GOU Xin, WANG Gang, et al. 2007. Heavy metal concentrations and source in arid agricultural soil in central Gansu Province, China. Journal of Environmental Sciences, 18(1): 77-88.
    [27]
    Madhav S, Ahamad A, Kumar A, et al. Ecology, Landscapes. Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geology, Ecology, and Landscapes, 2(2): 127-136. doi:  10.1080/24749508.2018.1452485
    [28]
    Marandi A, Shand P. 2018. Groundwater chemistry and Gibbs diagram. Applied Geochemistry, 97: 209-212. doi:  10.1016/j.apgeochem.2018.07.009
    [29]
    Monir M, Khan Y, Hossain Kazi HM, et al. 2011. Investigation of water quality in the Ganges River, Bangladesh: Implications for drinking and household purposes. International Journal of Economic and Environment Geology, 2(2): 22-24.
    [30]
    Monir MU, Khan YA, Quamruzzaman C, et al. 2012. Ganges river water suitability for drinking and household purposes in Rajshahi city area, Bangladesh. Indian Journal of Power & River Vally Development.
    [31]
    Mukherjee A. 2018. Overview of the groundwater of South Asia, Groundwater of South Asia. Springer: 3-20.
    [32]
    Mukherjee I, Singh UK. 2018. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environmental Geochemistry and Health, 40(6): 2259-2301. doi:  10.1007/s10653-018-0096-x
    [33]
    Organization WH, 2009. Boron in drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality, Geneva: World Health Organization.
    [34]
    Peterson E, Hoef Jay Ver. 2014. STARS: An ArcGIS toolset used to calculate the spatial information needed to fit spatial statistical models to stream network data. Journal of Statistical Software, 56(2): 1-17.
    [35]
    Piper AM. 1944. A graphic procedure in the geochemical interpretation of wateranalyses. Transactions American Geophysical Union, 25(6): 914-928. doi:  10.1029/TR025i006p00914
    [36]
    Rabeiy Ragab EISayed. 2018. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environmental Science and Pollution Research, 25(31): 30808-30817. doi:  10.1007/s11356-017-8617-1
    [37]
    Rajesh R, Brindha K, Murugan R, et al. 2012. Influence of hydrogeochemical processes on temporal changes in groundwater quality in a part of Nalgonda district, Andhra Pradesh, India. Environmental Earth Sciences, 65: 1203-1213. doi:  10.1007/s12665-011-1368-2
    [38]
    RamyaPriya R, Elango L. 2018. Evaluation of geogenic and anthropogenic impacts on spatio-temporal variation in quality of surface water and groundwater along Cauvery River, India. Environmental Earth Science, 77(1): 2.
    [39]
    Rao GS, Nageswararao G. 2013. Assessment of ground water quality using water quality index. Arch Environ Sci, 7: 1-5.
    [40]
    Richards LA. 1954. Diagnosis and improvement of saline and alkali soils. Soil Science, 78(2):154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000006260965
    [41]
    Sadashivaiah C, Ramakrishnaiah C, Ranganna G. 2008. Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. International Journal of Environmental Research and Public, 5(3): 158-164. doi:  10.3390/ijerph5030158
    [42]
    Safeeq M, Fares A. 2016. Groundwater and surface water interactions in relation to natural and anthropogenic environmental changes, Emerging Issues in Groundwater Resources. Springer: 289-326.
    [43]
    Sarker BC, Hara M, Zaman MW. 2000. Suitability assessment of natural water in relation to irrigation and soil properties. Soil Science & Plant Nutrition, 46(4): 773-786. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00380768.2000.10409143
    [44]
    Shahidullah SM, Hakim MA, Alam MS, et al. 2000. Assessment of a groundwater quality in a selected area of Bangladesh. Pakistan Journal of Biological Sciences, 3(2): 246-249. doi:  10.3923/pjbs.2000.246.249
    [45]
    Shammi M, Rahman R, Rahman Md M, et al. 2016. Assessment of salinity hazard in existing water resources for irrigation and potentiality of conjunctive uses: A case report from Gopalganj District, Bangladesh. Sustainable Water Resources Management, 2(4): 369-378.
    [46]
    Sharma Prerna, Meher PK, Kumar A, et al. 2014. Changes in water quality index of Ganges river at different locations in Allahabad. Sustainability of Water Quality and Ecology. Ecology, 3-4: 67-76.
    [47]
    Singaraja C. 2017. Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu, India. Applied Water Science, 7(5): 2157-2173. doi:  10.1007/s13201-017-0594-5
    [48]
    Singh AK, Kumar SR. 2015. Quality assessment of groundwater for drinking and irrigation use in semi-urban area of Tripura, India. Ecology, Environment and Conservation, 21(1): 97-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88b4b6a744d9b5a9132314958c6d515d
    [49]
    Singh AK, Mondal GC, Tewary BK, et al. 2009. Major ion chemistry, solute acquisition processes and quality assessment of mine water in Damodar valley coalfields, India.International Mine Water Conference.
    [50]
    Singh, G Kamal, R Kant. 2017. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India. Applied Water Science, 7(3): 1479-1485. doi:  10.1007/s13201-016-0430-3
    [51]
    Subramani T, Rajmohan N, Elango LJE. 2010. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162(1-4): 123-137. doi:  10.1007/s10661-009-0781-4
    [52]
    Sutadian AD, Muttil N, Yilmaz AG, et al. 2018. Development of the water quality index for rivers in West Java Province, Indonesia. Ecological Indicators, 85: 966-982. doi:  10.1016/j.ecolind.2017.11.049
    [53]
    Vasanthavigar M, Srinivasamoorthy K, Ganthi RR, et al. 2012. Characterisation and quality assessment of groundwater with a special emphasis on irrigation utility: Thirumanimuttar sub-basin, Tamil Nadu, India. Arabian Journal of Geosciences, 5(2): 245-258. http://cn.bing.com/academic/profile?id=af7cf511d16dd7425620d9f12fafb9a5&encoded=0&v=paper_preview&mkt=zh-cn
    [54]
    XU Pan-pan, FENG Wen-wen, QIAN Hui, et al. 2019. Hydrogeochemical characterization and Irrigation quality assessment of shallow groundwater in the Central-Western Guanzhong Basin, China. International Journal of Environmental Research & Public Health, 16(9): 1492. http://cn.bing.com/academic/profile?id=e966d9055b72a1e1c7b6b0cf584cf5f9&encoded=0&v=paper_preview&mkt=zh-cn
    [55]
    ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, et al. 2018. Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain. Journal of Groundwater Science and Engineering, 6(3): 220-233. http://gwse.iheg.org.cn/EN/abstract/abstract339.shtml
    [56]
    ZHANG W, Kinniburgh D, Gabos S. 2013. Assessment of groundwater quality in Alberta, Canada using GIS mapping, 3rd International Conference on Medical, Biological and Pharmaceutical Sciences, Bali, Indonesia.
  • [1] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine. Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria. Journal of Groundwater Science and Engineering, 2020, 8(2): 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [2] Muhammad Juandi. Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia. Journal of Groundwater Science and Engineering, 2020, 8(1): 20-29.  doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [3] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA. Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco. Journal of Groundwater Science and Engineering, 2020, 8(2): 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [4] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe. Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran). Journal of Groundwater Science and Engineering, 2020, 8(3): 230-243.  doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [5] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani. Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS. Journal of Groundwater Science and Engineering, 2020, 8(1): 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [6] ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min. Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones. Journal of Groundwater Science and Engineering, 2019, 7(2): 173-181.
    [7] T K G P Ranasinghe, R U K Piyadasa. Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion. Journal of Groundwater Science and Engineering, 2019, 7(4): 340-353.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005
    [8] ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, YUAN Rui-qiang, TANG Chang-yuan, SONG Xian-fang. Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain. Journal of Groundwater Science and Engineering, 2018, 6(3): 220-233.  doi: 10.19637/j.cnki.2305-7068.2018.03.007
    [9] Pezhman ROUDGARMI, Ebrahim FARAHANI. Investigation of groundwater quantitative change, Tehran Province, Iran. Journal of Groundwater Science and Engineering, 2017, 5(3): 278-285.
    [10] Khongsab Somphone, OunakoneKone Xayviliya. Climate change and groundwater resources in Lao PDR. Journal of Groundwater Science and Engineering, 2017, 5(1): 53-58.
    [11] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng. Climate change and groundwater resources in China. Journal of Groundwater Science and Engineering, 2017, 5(1): 44-52.
    [12] Chamroeun SOK, Sokuntheara CHOUP. Climate change and groundwater resources in Cambodia. Journal of Groundwater Science and Engineering, 2017, 5(1): 31-43.
    [13] JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao. Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China. Journal of Groundwater Science and Engineering, 2017, 5(3): 235-248.
    [14] ZHOU Xun. Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China. Journal of Groundwater Science and Engineering, 2017, 5(4): 343-353.
    [15] LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei. Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid. Journal of Groundwater Science and Engineering, 2016, 4(2): 81-87.
    [16] LIU Chun-yan, SUN Ji-chao, JING Ji-hong, ZHANG Ying, GUO Wei-xuan. Distribution characteristics and source of BTEX in groundwater in Guangzhou, Guangdong Province, P. R. China. Journal of Groundwater Science and Engineering, 2016, 4(3): 238-246.
    [17] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei. Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China. Journal of Groundwater Science and Engineering, 2015, 3(2): 136-146.
    [18] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen. Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend. Journal of Groundwater Science and Engineering, 2013, 1(1): 1-10.
    [19] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu. Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River. Journal of Groundwater Science and Engineering, 2013, 1(1): 82-88.
    [20] Meng-jie Wu, Hui-zhen Hen. Brief Talk of Groundwater Resources in Role of Rural Drinking Water Safety and Construction of City Emergency Water Source. Journal of Groundwater Science and Engineering, 2013, 1(3): 40-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (253) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return