• ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 8 Issue 4
Dec.  2020
Turn off MathJax
Article Contents
Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum. Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer[J]. Journal of Groundwater Science and Engineering, 2020, 8(4): 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007
Citation: Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum. Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer[J]. Journal of Groundwater Science and Engineering, 2020, 8(4): 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007

Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer

doi: 10.19637/j.cnki.2305-7068.2020.04.007
More Information
  • Corresponding author: Muhammad Rizwan, E-mail: rizwan514@lzb.ac.cn
  • Received Date: 2020-07-13
  • Accepted Date: 2020-09-21
  • Publish Date: 2020-12-01
  • Geoelectric and hydrochemical approaches are employed to delineate the ground-water potential zones in District Okara, a part of Bari Doab, Punjab, Pakistan. Sixty-seven VES surveys are conducted with the Electrical Resistivity Meter. The resultant resistivity verses depth model for each site is estimated using computer-based software IX1D. Aquifer thickness maps and interpreted resistivity maps were generated from interpreted VES results. Dar-Zarrouk parameters, transverse resistance (TR), longitudinal conductance (SL) and anisotropy (λ) were also calculated from resistivity data to delineate the potential zones of aquifer. 70% of SL value is ≤3S, 30% of SL value is > 3S. According to SL and TR values, the whole area is divided into three potential zones, high, medium and low potential zones. The spatial distribution maps show that north, south and central parts of study area are marked as good potential aquifer zones. Longitudinal conductance values are further utilized to determine aquifer protective capacity of area. The whole area is characterized by moderate to good and up to some extent very good aquifer protective area on the basis of SL values. The groundwater samples from sixty-seven installed tube wells are collected for hydro-chemical analysis. The electrical conductivity values are determined. Correlation is then developed between the EC (μS/cm) of groundwater samples vs. interpreted aquifer resistivity showing R2 value 0.90.
  • 加载中
  • [1]
    Aamer M, Sabir MF. 2014. Irrigation water quality based on hydro chemical analysis, district Rahim Yar Khan, Pakistan. Journal of Resources Development and Management, 4: 52-56.
    [2]
    Abbas F, Ahmad A, Safeeq M, et al. 2014. Changes in precipitation extremes over arid to semiarid and subhumid Punjab, Pakistan. Theoretical and Applied Climatology, 116(3-4): 671-680. doi:  10.1007/s00704-013-0988-8
    [3]
    Adagunodo TA, Akinloye MK, Sunmonu LA, et al. 2018. Groundwater exploration in Aaba residential area of Akure, Nigeria. Frontiers in Earth Science, 6: 66. https://doi.org/10.3389/feart.2018.00066 doi:  10.3389/feart.2018.00066
    [4]
    Adeniji A, Obiora D, Omonona O, et al. 2013. Geoelectrical evaluation of groundwater po-tentials of Bwari basement area, Central Nigeria. International Journal of Physical Sciences, 8(25): 1350-1361.
    [5]
    Akinwumiju AS, Olrunfemi MO, Afolabi O. 2016. GIS-based integrated groundwater poten-tial assessment of Osun Drainage Basin, South-western Nigeria. Ife Journal of Science, 18(1): 147-168. https://www.researchgate.net/publication/301804742_GIS-BASED_INTEGRATED_GROUNDWATER_POTENTIAL_ASSESSMENT_OF_OSUN_DRAINAGE_BASIN_SOUTHWESTERN_NIGERIA_1_2_2
    [6]
    Alam N, Olsthoorn TO. 2014. Punjab scavenger wells for sustainable additional groundwater irrigation. Agricultural Water Management, 138(31): 55-67.
    [7]
    Basharat M, Tariq A. 2013. Long-term groundwater quality and saline intrusion assessment in an irrigated environment: A case study of the aquifer under the lbdc irrigation system. Irrigation and Drainage, 62(4): 510-523. DOI:  10.1002/ird.1738
    [8]
    Basharat M, Sultan S, Malik A. 2015. Groundwater management in Indus Plain and integrated water resources management approach. International Waterlogging and Salinity Res-earch Institute (IWASRI): Lahore, Pakistan.
    [9]
    Basharat M, Tariq A-U-R. 2014. Command-scale integrated water management in response to spatial climate variability in Lower Bari Doab Canal irrigation system. Water Policy, 16(2): 374-396. https://doi.org/10.2166/wp.2013.221 doi:  10.2166/wp.2013.221
    [10]
    Bureau of Statistics, Government of Punjab. 2014. Statistics division. Lahore. 2014-15
    [11]
    Charoenpong S, Suwanprasit C, Thongchumnum P. 2012. Impacts of interpolation techniques on groundwater potential modeling using GIS in Phuket Province, Thailand. Andaman Environment and Natural Disaster Research Center.
    [12]
    Daraz GK, Wahedullah, Bhatti AS. 2013. Ground-water investigation by using resistivity survey in Peshawar, Pakistan. Journal of Resources Development and Management, 2: 9-20.
    [13]
    Dor N, Syafalni S, Abustan I, et al. 2011. Verifica-tion of surface groundwater connec-tivity in an irrigation canal using geophysical, water balance and stable isotope approaches. Water Resource Management, 5: 2837.
    [14]
    El-Kadi AI. 2017. Groundwater models for resources analysis and management. CRC Press.
    [15]
    Elliott J, Deryng D, Müller C, et al. 2014. Con-straints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9): 3239-3244. www.pnas.org/cgi/doi/10.1073/pnas.1222474110 doi:  10.1073/pnas.1222474110
    [16]
    GOP. 2017. Agriculture statistics of Pakistan 2017-18. Ministry of National Food Security and Research Islamabad.
    [17]
    Hasan M, Shang Y, Akhter G, et al. 2018. Geo-physical assessment of groundwater potential: A case study from Mian Channu Area, Paki-stan. Ground Water, 56(5): 783-796. DOI:  10.1111/gwat.12617
    [18]
    Hasan M, Shang Y, Akhter G, et al. 2017. Geo-physical investigation of fresh-saline water interface: A case study from South Punjab, Pakistan. Ground Water, 55(6): 841-856. DOI:  10.1111/gwat.12527.
    [19]
    Imran M, Ali A, Ashfaq M, et al. 2018. Impact of climate smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability. 10:2101. doi:  10.3390/su10062101
    [20]
    Kearey P, Brooks M, Hill I. 2013. An introduction to geophysical exploration. John Wiley & Sons.
    [21]
    Khan AD, Iqbal N, Ashraf M, et al. 2016. Ground-water investigation and mapping in Upper Indus Plain. Pakistan Council of Research in Water Resources (PCRWR), Islamabad: 72.
    [22]
    Koefoed O. 1979. Groundwater principles, 1, Resistivity sounding measurements. Elsevier Scientific Publication co, Amsterdam-Oxford-New York.
    [23]
    Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4): 529-556. DOI:  10.1190/1.1437342
    [24]
    Manu E, Agyekum WA, Duah A, et al. 2019. Application of vertical electrical sounding for groundwater exploration of cape coast municipality in the central region of Ghana. Arabian Journal of Geosciences, 12(6): 196. DOI:  10.1007/s12517-019-4374-4
    [25]
    Mehmood Q, Mehmood W, Awais M, et al. 2020. Optimizing groundwater quality exploration for irrigation water wells using geophysical technique in semi-arid irrigated area of Pakistan. Groundwater for Sustainable Development: 100397. https://doi.org/10.1016/j.gsd.2020.100397
    [26]
    Michael F, Reilly TE, Michael GR, et al. 2003. Assessing groundwater vulnerability to contamination: Providing scientifically defensible information for decision makers. US Geological Survey Circular: 1224.
    [27]
    Mohamaden M, El-Sayed H, Hamouda A. 2016. Combined application of electrical resistivity and GIS for subsurface mapping and groundwater exploration at El-Themed, Southeast Sinai, Egypt. The Egyptian Journal of Aquatic Research, 42(4): 417-426. DOI:  10.1016/j.ejar.2016.10.007
    [28]
    Mujtaba G, Ahmed Z, Ophori D. 2007. Mana-gement of groundwater resources in Punjab, Pakistan, using a groundwater flow model. Journal of Environmental Hydrology, 15: 1-14. https://www.researchgate.net/publication/295407853_Management_of_groundwater_resources_in_Punjab_Pakistan_using_a_groundwater_flow_model
    [29]
    Nas B, Berktay A. 2010. Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment, 160(1-4): 215-227. doi:  10.1007/s10661-008-0689-4
    [30]
    Nwachukwu S, Bello R, Balogun A. 2019. Evaluation of groundwater potentials of Orogun, South-south part of Nigeria using electrical resistivity method. Applied Water Science, 9(8): 184. DOI:  10.1007/s13201-019-1072-z
    [31]
    Obianwu VI, Atan O, Okiwelu O. 2015. Deter-mination of aquifer position using electric geophysical method. Applied Physics Re-search, 7(2): 83.
    [32]
    Oladapo MI, Akintorinwa OJ. 2007. Hydro-geophysical study of Ogbese south western Nigeria. Global Journal of Pure and Applied Sciences, 13(1): 55-61. DOI:  10.4314/gjpas.v13i1.16669
    [33]
    Punthakey J, Khan M, Ahmad RN, et al. 2016. Optimising canal and groundwater management to assist water user associations in maximizing crop production and managing salinisation in Australia and Pakistan.
    [34]
    Shakir AS, Mughai H, Khan NM, et al. 2016. Impact of canal water shortages on ground-water in the Lower Bari Doab Canal System in Pakistan. Pakistan Journal Engineering & Application Science, 9: 87-97.
    [35]
    Shakoor A. 2015. Hydrogeologic assessment of spatio-temporal variation in groundwater quality and its impact on agricultural produ-ctivity, University of Agriculture, Faisalabad.
    [36]
    Sikandar P, Christen E, Stein TM. 2017. Vertical electrical sounding (ves) for salinity ass-essment of water-bearing formations. Irr-igation and Drainage, 66(2): 252-262. DOI:  10.1002/ird.2094
    [37]
    Singh KP. 2005. Nonlinear estimation of aquifer parameters from surficial resistivity measure-ments. Hydrology and Earth System Sciences Discussions, 2(3): 917-938. DOI:  10.5194/hessd-2-917-2005.
    [38]
    Terry N, Day-Lewis F, Robinson JL, et al. 2017. Scenario evaluator for electrical resistivity survey pre-modeling tool. Groundwater, 55(6): 885-890. https://doi.org/10.1111/gwat.12522 doi:  10.1111/gwat.12522
    [39]
    WAPDA. 1980. Hydrological data of Bari Doab, basic data release. Directorate General of Hydrogeology, Lahore.
    [40]
    WAPDA. 1981. Atlas-Soil salinity survey of ir-rigated areas of Indus basin 41 million acres. Survey and Research Organization, Planning Division, Lahore, WAPDA.
    [41]
    Watto MA, Mugera AW. 2016. Groundwater depletion in the Indus plains of Pakistan: Im-peratives, repercussions and management issues. International Journal of River Basin Management, 14(4): 447-458. https://doi.org/10.1080/15715124.2016.1204154. doi:  10.1080/15715124.2016.1204154
    [42]
    Yeboah-Forson A, Whitman D. 2013. Electrical resistivity characterization of anisotropy in the Biscayne aquifer. Ground Water, 52: 728-736. DOI:  10.1111/gwat.12107
  • [1] Dinagarapandi Pandi, Saravanan Kothandaraman, Mohan Kuppusamy. Delineation of potential groundwater zones based on multicriteria decision making technique. Journal of Groundwater Science and Engineering, 2020, 8(2): 180-194.  doi: 10.19637/j.cnki.2305-7068.2020.02.009
    [2] YUAN Qiao-ling, LI Zhi-ping, LI Lei-cheng, WANG Shu-li, YAO Si-yu. Pharmaceuticals and personal care products transference-transformation in aquifer system. Journal of Groundwater Science and Engineering, 2020, 8(4): 358-365.  doi: 10.19637/j.cnki.2305-7068.2020.04.006
    [3] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip. Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand. Journal of Groundwater Science and Engineering, 2020, 8(1): 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [4] SONG Hong-wei, XIA Fan, MU Hai-dong, WANG Wei-qiang, SHANG Ming-sen. Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method. Journal of Groundwater Science and Engineering, 2020, 8(3): 281-286.  doi: 10.19637/j.cnki.2305-7068.2020.03.008
    [5] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR. Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco. Journal of Groundwater Science and Engineering, 2020, 8(2): 172-179.  doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [6] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson. Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift. Journal of Groundwater Science and Engineering, 2019, 7(4): 360-372.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [7] BELOUANAS Hemza, MENANI Mohamed Redha. Characterization of Continental Intercalaire aquifer (CI) in the Tinrhert-East Area-Illizi Basin on the Algerian-Libyan Border. Journal of Groundwater Science and Engineering, 2019, 7(2): 115-132.
    [8] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine. Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco. Journal of Groundwater Science and Engineering, 2019, 7(3): 224-236.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [9] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique. Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer. Journal of Groundwater Science and Engineering, 2019, 7(4): 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [10] LIU Yu, CHENG Yan-pei, GE Li-qiang. Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia. Journal of Groundwater Science and Engineering, 2018, 6(1): 49-57.  doi: 10.19637/j.cnki.2305-7068.2018.01.006
    [11] WU Ting-wen, WANG Li-huan, YANG Xiang-kui. Evaluation of groundwater potential and eco-geological environment quality in Sanjiang Plain of Heilongjiang Province. Journal of Groundwater Science and Engineering, 2017, 5(2): 193-201.
    [12] Pezhman ROUDGARMI, Ebrahim FARAHANI. Investigation of groundwater quantitative change, Tehran Province, Iran. Journal of Groundwater Science and Engineering, 2017, 5(3): 278-285.
    [13] Than Zaw, Maung Maung Than. Climate change and groundwater resources in Myanmar. Journal of Groundwater Science and Engineering, 2017, 5(1): 59-66.
    [14] HAO Qi-chen, SHAO Jing-li, CUI Ya-li, ZHANG Qiu-lan. Development of a new method for efficiently calculating of evaporation from the phreatic aquifer in variably saturated flow modeling. Journal of Groundwater Science and Engineering, 2016, 4(1): 26-34.
    [15] Dana Mawlood, Jwan Mustafa. Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer. Journal of Groundwater Science and Engineering, 2016, 4(3): 165-173.
    [16] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming. Krypton-85 dating of shallow aquifer in Hebei Plain. Journal of Groundwater Science and Engineering, 2016, 4(4): 328-332.
    [17] ZHOU Li-ling, CHENG Zhe, DUAN Lei, WANG Wen-ke. Distribution of groundwater salinity and formation mechanism of fresh groundwater in an arid desert transition zone. Journal of Groundwater Science and Engineering, 2015, 3(3): 268-279.
    [18] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng. Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis. Journal of Groundwater Science and Engineering, 2015, 3(2): 192-201.
    [19] Jingli Shao, Yali Cui, Yunzhang Zhao. A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River. Journal of Groundwater Science and Engineering, 2013, 1(1): 46-53.
    [20] Patsakron Assiri. Artesian Flowing Wells Field of Phu Tok Aquifer. Journal of Groundwater Science and Engineering, 2013, 1(3): 95-98.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (103) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return