• ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 8 Issue 4
Dec.  2020
Turn off MathJax
Article Contents
Rasoul Daneshfaraz, Ehsan Aminvash, Reza Esmaeli, Sina Sadeghfam, John Abraham. Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions[J]. Journal of Groundwater Science and Engineering, 2020, 8(4): 396-406. doi: 10.19637/j.cnki.2305-7068.2020.04.009
Citation: Rasoul Daneshfaraz, Ehsan Aminvash, Reza Esmaeli, Sina Sadeghfam, John Abraham. Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions[J]. Journal of Groundwater Science and Engineering, 2020, 8(4): 396-406. doi: 10.19637/j.cnki.2305-7068.2020.04.009

Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions

doi: 10.19637/j.cnki.2305-7068.2020.04.009
More Information
  • Corresponding author: Rasoul Daneshfaraz, E-mail: daneshfaraz@yahoo.com
  • Received Date: 2020-02-25
  • Accepted Date: 2020-05-22
  • Publish Date: 2020-12-01
  • Dealing with kinetic energy is one of the most important problems in hydraulic structures, and this energy can damage downstream structures. This study aims to study energy dissipation of supercritical water flow passing through a sudden contraction. The experiments were conducted on a sudden contraction with 15 cm width. A 30 cm wide flume was installed. The relative contraction ranged from 8.9 to 9.7, where relative contraction refers to the ratio of contraction width to initial flow depth. The Froude value in the investigation varied from 2 to 7. The contraction width of numerical simulation was 5~15 cm, the relative contraction was 8.9~12.42, and the Froude value ranged from 8.9~12.42. In order to simulate turbulence, the k-ε RNG model was harnessed. The experimental and numerical results demonstrate that the energy dissipation increases with the increase of Froude value. Also, with the sudden contraction, the rate of relative depreciation of energy is increased due to the increase in backwater profile and downstream flow depth. The experimentation verifies the numerical results with a correlation coefficient of 0.99 and the root mean square error is 0.02.
  • 加载中
  • [1]
    Alhamid AA. 2004. S-jump characteristics on sloping basins. Journal of Hydraulic Research, 42(6): 657-662. doi:  10.1080/00221686.2004.9628319
    [2]
    Babaali H, Shamsai A, Vosoughifar H. 2015. Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes. Arabian Journal for Science and Engineering, 40: 381-395. doi:  10.1007/s13369-014-1466-z
    [3]
    Bozkus Z, Pinar C, Metin G. 2007. Energy dissipation by vertically placed screens. Canadian Journal of Civil Engineering, 34(4): 557-564. doi:  10.1139/l06-158
    [4]
    Bremen R, Hager WH. 1993. T-jump in abruptly expanding channel. Journal of Hydraulic Research, 31(1): 61-78. doi:  10.1080/00221689309498860
    [5]
    Çakir P. 2003. Experimental investigation of energy dissipation through screens. Ph.D thesis. Ankara: Middle East Technical University.
    [6]
    Chippada S, Ramaswamy B, Wheeler MF. 1994. Numerical simulation of hydraulic jump. International Journal for Numerical Methods in Engineering, 37: 1381-1397. https://www.researchgate.net/publication/230420609_Numerical_simulation_of_hydraulic_jump?ev=auth_pub
    [7]
    Castillo LG, Carrillo JM, Carcía JT. 2014. Numerical simulations and laboratory measurements in hydraulic jumps. 11th International conference on hydroinformatics.
    [8]
    Daneshfaraz R, Sadeghfam S, Kashani M. 2014a. Numerical simulation of flow over stepped spillways. Research in Civil and Environmental Engineering. 2(04): 190-198. https://www.researchgate.net/publication/274715656_NUMERICAL_SIMULATION_OF_FLOW_OVER_STEPPED_SPILLWAYS?ev=prf_high
    [9]
    Daneshfaraz R, Birol K, Sadeghfam S, et al. 2014b. Simulation of flow over ogee and stepped spillways and comparison of finite element volume and finite element methods. Journal of Water Resource and Hydraulic Engineering, 3(2): 37-47. http://www.academicpub.org/jwrhe/paperInfo.aspx?PaperID=16185
    [10]
    Daneshfaraz R, Minaei O, Abraham JP, et al. 2019a. 3-D Numerical simulation of water flow over a broad-crested weir with openings. ISH Journal of Hydraulic Engineering, 1-9.
    [11]
    Daneshfaraz R, Mirzaee R, Ghaderi A, et al. 2019b. The S-jump's characteristics in the rough sudden expanding stilling basin, AUT Journal of Civil Engineering. doi:  10.22060/ajce.2019.16427.5586.
    [12]
    Daneshfaraz R, Dasineh M, Ghaderi A, et al. 2019c. Numerical modeling of hydraulic properties of sloped broad crested weir. AUT Journal of Civil Engineering. doi:  10.22060/ajce.2019.16184.5574.
    [13]
    Daneshfaraz R, Ghaderi A. 2017. Numerical investigation of inverse curvature ogee spillways. Civil Engineering Journal, 3(11): 1146-1156. http://www.researchgate.net/publication/321717342_Numerical_Investigation_of_Inverse_Curvature_Ogee_Spillway
    [14]
    Dey S, Raikar RV. 2007. Characteristics of horseshoe vortex in developing scour holes at piers. Journal of Hydraulic Engineering, 133(4): 399-413. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg10/ref10&dbid=16&doi=10.1139%2fcjce-2012-0240&key=10.1061%2f(asce)0733-9429(2007)133%3a4(399)
    [15]
    Ghaderi A, Abbasi S, Abraham J, et al. 2020. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation. https://doi.org/j.flowmeasinst.2020.101711 http://www.sciencedirect.com/science/article/pii/S0955598620300595
    [16]
    Ghaderi A, Abbasi S. 2019. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sadhana, 44(10): 216. http://www.researchgate.net/publication/336245759_CFD_simulation_of_local_scouring_around_airfoil-shaped_bridge_piers_with_and_without_collar
    [17]
    Ghazi B, Daneshfaraz R, Jeihouni E. 2019. Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway. Journal of Groundwater Science and Engineering, 7(4): 323-332. http://gwse.iheg.org.cn/en/article/doi/DOI:%2010.19637/j.cnki.2305-7068.2019.04.003
    [18]
    Herbrand K. 1973. The spatial hydraulic jump. Journal of Hydraulic Research, 11(3): 205-218. doi:  10.1080/00221687309499774
    [19]
    Jamil M, Suhail AK. 2010. Theoretical study of hydraulic jump in circular channel section. ISH Journal of Hydraulic Engineering, 16(1): 1-10. doi:  10.1080/09715010.2010.10514984
    [20]
    Jan C, Chang C. 2009. Hydraulic jumps in an inclined rectangular chute contraction. Journal of Hydraulic Engineering, 135(11): 949-958. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHEND8000135000011000949000001&idtype=cvips&gifs=Yes
    [21]
    Lebdiri F, Seghir A, Berreksi A. 2018. Finite element and finite volume method for simulation of free surface flows: Application to spillways. 2nd National Conference on Computational Fluid Dynamics and Technology at SSRN 3373179. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3373179
    [22]
    Matin MA, Hasan MR, Islam MA. 2008. Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel. Journal of Civil Engineering (IEB), 36(2): 65-77. https://www.researchgate.net/publication/267797031_Experiment_on_hydraulic_jump_in_sudden_expansion_in_a_sloping_rectangular_channel
    [23]
    Nayebzadeh B, Lotfollahi yaghin MA, Daneshfaraz R. 2020. Numerical investigation of hydraulic characteristics of vertical drops with screens and gradually wall expanding. Amirkabir Journal of Civil Engineering (In Persian).
    [24]
    Rajaratnam N, Hurtig KI. 2000. Screen-type energy dissipator for hydraulic structures. Journal of Hydraulic Engineering, 126(4): 310-312.
    [25]
    Rajaratnam N, Subramanya K. 1968. Hydraulic jumps below abrupt symmetrical expansions. Journal of the Hydraulics Division, 94(2): 481-504. https://www.researchgate.net/publication/292757547_Hydraulic_jumps_below_abrupt_symmetrical_expansions
    [26]
    Sadeghfam S, Akhtari AA, Daneshfaraz R, et al. 2015. Experimental investigation of screens as energy dissipaters in submerged hydraulic jump. Turkish Journal of Engineering and Environmental Sciences, 38(2): 126-138.
    [27]
    Sharif N, Rostami A. 2014. Experimental and numerical study of the effect of flow sepration on dissipating energy in compound bucket. APCBEE Procedia, 9: 334-338. https://www.sciencedirect.com/science/article/pii/S2212670814000608
    [28]
    WU Bao-sheng, Molinas A. 2001. Choked flows through short contractions. Journal of Hydraulic Engineering, 127(8): 657-662. https://www.researchgate.net/publication/265192011_Choked_Flows_through_Short_Contractions
    [29]
    Yasuda Y, Hager W. 1995. Hydraulic jump in channel contraction. Canadian Journal of Civil Engineering, 22(5): 925-933.
    [30]
    Zhou Y, Wu J, Ma F, et al. 2020. Uniform flow and energy dissipation of hydraulic jump stepped spillways. Water Supply. https://doi.org/10.2166/ws.2020.056 doi:  10.2166/ws.2020.056
  • [1] ZHOU Bo, WEI Shan-ming, WANG Tao, NIE Yu-peng, WANG Chuan-qi. Discussion on establishing monitoring networks for temperature fields of shallow thermal energy in Shandong, China. Journal of Groundwater Science and Engineering, 2019, 7(1): 86-93.
    [2] XING Hui, DI Yan-song, YONG Yi. Analysis on the law of occurrence of shallow geothermal energy in Zhoukou City of Henan Province, China. Journal of Groundwater Science and Engineering, 2019, 7(3): 282-287.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.008
    [3] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson. Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift. Journal of Groundwater Science and Engineering, 2019, 7(4): 360-372.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [4] Babak Ghazi, Rasoul Daneshfaraz, Esmaeil Jeihouni. Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway. Journal of Groundwater Science and Engineering, 2019, 7(4): 323-332.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.003
    [5] JI Rui-li, ZHANG Ming, SU Rui, GUO Yong-hai, ZHOU Zhi-chao, LI Jie-biao. Research of in-situ hydraulic test method by using double packer equipment. Journal of Groundwater Science and Engineering, 2016, 4(1): 41-51.
    [6] ZHU Xi, ZHANG Qing-lian, WANG Wan-li, LIU Yan-guang. Study on the influencing factors of rock-soil thermophysical parameters in shallow geothermal energy. Journal of Groundwater Science and Engineering, 2015, 3(3): 256-267.
    [7] LU Chuan, LI Long, LIU Yan-guang, WANG Gui-ling. Capillary Pressure and Relative Permeability Model Uncertainties in Simulations of Geological CO2 Sequestration. Journal of Groundwater Science and Engineering, 2014, 2(2): 1-17.
    [8] LIU Chun-lei, YANG Hui-feng, WANG Gui-ling. Back calculation of soil hydraulic parameters based on HYDRUS-1D. Journal of Groundwater Science and Engineering, 2014, 2(3): 46-53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (153) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return