Citation: | Jin-bing LIU, Si-min JIANG, Nian-qing ZHOU, et al. 2021: Groundwater contaminant source identification based on QS-ILUES. Journal of Groundwater Science and Engineering, 9(1): 73-82. doi: 10.19637/j.cnki.2305-7068.2021.01.007 |
CAO Zhen-dan, LI Liang-ping, CHEN Kang. 2018. Bridging iterative ensemble smoother and multiple-point geostatistics for better flow and transport modeling. Journal of Hydrology, 565: 411-421. doi: 10.1016/j.jhydrol.2018.08.023
|
Chen Y, Oliver DS. 2012. Ensemble randomized maximum likelihood method as an itera-tive ensemble smoother. Mathematical Geo-sciences, 44(1): 1-26. http://d.wanfangdata.com.cn/periodical/c207e8f6aeddbce8976da66371cdd132
|
Emerick AA, Reynolds AC. 2013. Ensemble smoother with multiple data assimilation. Computers & Geosciences, 55: 3-15. http://dl.acm.org/citation.cfm?id=2464411
|
Evensen G, Van Leeuwen PJ. 2000. An ensemble kalman smoother for nonlinear dynamics. Monthly Weather Review, 128(6): 1852-1867. doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
|
Gravey M, Mariethoz G. 2020. QuickSampling v1.0: A robust and simplified pixel-based multiple-point simulation approach. Geosci-entific Model Development, 13(6): 2611-2630.
|
Guneshwor L, Eldho TI, Vinod kumar A. 2018. Identification of groundwater contamination sources using meshfree RPCM simulation and particle swarm optimization. Water Resources Management, 32(4): 1517-1538. doi: 10.1007/s11269-017-1885-1
|
Jha M, Datta B. 2013. Three-dimensional ground-water contamination source identi-fication using adaptive simulated annealing. Journal of Hydrologic Engineering, 18(3): 307-317. doi: 10.1061/(ASCE)HE.1943-5584.0000624
|
JIANG Si-min, ZAHNG Ya-li, WANG Pei, et al. 2013. An almost-parameter-free harmony search algorithm for groundwater pollution source identification. Water Science and Technology, 68(11): 2359-2366. doi: 10.2166/wst.2013.499
|
JU Lei, ZHANG Jiang-jiang, MENG Long, et al. 2018. An adaptive Gaussian process-based iterative ensemble smoother for data assimilation. Advances in Water Resources, 115: 125-135. doi: 10.1016/j.advwatres.2018.03.010
|
LI Li, WANG Yong-gang. 2006. Review of app-lications of geostatistics. Progress in Expora-tion Geophysics, 29(3): 163-169. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTDQ200603003.htm
|
LI Liang-ping, Stetler L, CAO Zhen-dan, et al. 2018a. An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation. Journal of Hydrology, 567: 759-766. doi: 10.1016/j.jhydrol.2018.01.038
|
LI Liang-ping, Puzel R, Davis A, et al. 2018b. Data assimilation in groundwater modelling: Ensemble Kalman filter versus ensemble smoothers. Hydrological Processes, 32(13): 2020-2029. doi: 10.1002/hyp.13127
|
LIU Ling-ling, WU Jian-feng, WU Ji-chun, et al. 2009. A comparative study of four geostatistical methods for identifying the hydraulic conductivity fields based on test data. Hydrogeology & Engineering Geology, 36(5): 66-71. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG200905017.htm
|
LIU Wen-ting, CHAO LUN Ba-gen, LIU Yan-wei, et al. 2010. Applying geostatistic for the study on spatial variability of coefficient of permeability. Water Conservancy Science and Technology and Economy, 16(4): 364-366. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLKY201004004.htm
|
LUO Hong-mei, YANG Pei-jie, WANG Chang-jiang, et al. 2015. Lithofacies simulation based on multi-point geostatistics multiple data joint constraints. Oil Geophysical Pros-pecting, 50(1): 162-169. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-SYDQ201501031.htm
|
Mariethoz G, Renard P, Straubhaar J, et al. 2010. The Direct sampling method to perform multiple‐point geostatistical simulations. Water Resources Research, 46(11): 1-14. http://www.cabdirect.org/abstracts/20113080508.html;jsessionid=0548407FA58EB53F80C232A33FD8C6A7;jsessionid=B8DC5AD104CC11C440FBB052C79885CE
|
MO Shao-xing, Zabaras N, SHI Xiao-qing, et al. 2019. Deep autoregressive neural net-works for high‐dimensional inverse pro-blems in groundwater contaminant source identification. Water Resources Research, 55(5): 3856-3881. doi: 10.1029/2018WR024638
|
MO Shao-xing, Zabaras N, SHI Xiao-qing, et al. 2020. Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian hydraulic conductivities. Water Resources Research, 56(2): 1-24. http://arxiv.org/abs/1906.11828?context=stat.ML
|
Ramarao BS, Lavenue AM, DE Marsily G, et al. 1995. Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. Theory and computational experiments. Water Resources Research, 31(3): 475-493. doi: 10.1029/94WR02258
|
Rezaee H, Mariethoz G, Koneshloo M, et al. 2013. Multiple-point geostatistical simulation using the bunch-pasting direct sampling method. Computers & Geosciences, 54: 293-308. doi: 10.1016/j.cageo.2013.01.020
|
Straubhaar J, Renard P, Mariethoz G, et al. 2011. An improved parallel multiple-point algorithm using a list approach. Mathematical Geosciences, 43(3): 305-328. doi: 10.1007/s11004-011-9328-7
|
Strebelle S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1): 1-21. doi: 10.1023/A:1014009426274
|
XIA Xue-min, JIANG Si-min, ZHOU Nian-qing, et al. 2019. Genetic algorithm hyper-parameter optimization using taguchi design for ground-water pollution source identification. Water Supply, 19(1): 137-146. doi: 10.2166/ws.2018.059
|
YANG Ai-lin, JIANG Si-min, LIU Jin-bing, et al. 2020. Groundwater contaminant source identification based on iterative local update ensemble smoother. Journal of Groundwater Science and Engineering, 8(1): 1-9. doi: 10.19637/j.cnki.2305-7068.2020.01.001
|
YANG Pei-jie. 2014. Geostatistics inversion- from two-point to multiple-point. Progress in Geophysics, 29(5): 2293-2300. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201405045.htm
|
ZHANG Jiang-jiang, LIN Guang, LI Wei-xuan, et al. 2018. An iterative local updating en-semble smoother for estimation and un-certainty assessment of hydrologic model parameters with multimodal distributions. Water Resources Research, 54(3): 1716-1733. doi: 10.1002/2017WR020906
|
ZONG Cheng-yuan, KANG Xue-yuan, SHI Xiao-qing, et al. 2020. Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method. Hydrogeology & Engineering Geology, 47(02): 1-8. (in Chinese)
|
[1] | Meng-lei Ji, Shuai-chao Wei, Wei Zhang, Feng Liu, Yu-zhong Liao, Ruo-xi Yuan, Xiao-xue Yan, Long Li, 2024: Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China, Journal of Groundwater Science and Engineering, 12, 4-15. doi: 10.26599/JGSE.2024.9280002 |
[2] | Hui-Meng Su, Fa-Wang Zhang, Jing-Yu Hu, Jin-Feng Lei, Wei Zuo, Bo Yang, Yu-Hua Liu, 2024: Identified the hydrochemical and the sulfur cycle process in subsidence area of Pingyu mining area using multi-isotopes combined with hydrochemistry methods, Journal of Groundwater Science and Engineering, 12, 62-77. doi: 10.26599/JGSE.2024.9280006 |
[3] | ILUNGA Nyembwe, AMADI Akobundu Nwanosike, Gilbert NDATIMANA, Nelson OKOT, Raphaël TSHIMANGA Muamba, 2024: Evaluation of aquifer hydraulic properties from resistivity and pumping test data in parts of Gwagwalada, Northcentral Nigeria, Journal of Groundwater Science and Engineering, 12, 309-320. doi: 10.26599/JGSE.2024.9280023 |
[4] | Peng-yu Shi, Jian-jun Liu, Yi-jie Zong, Kai-qing Teng, Yu-ming Huang, Liang Xiao, 2023: Analytical solution for Non-Darcian effect on transient confined-unconfined flow in a confined aquifer, Journal of Groundwater Science and Engineering, 11, 365-378. doi: 10.26599/JGSE.2023.9280029 |
[5] | Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng, 2023: Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80. doi: 10.26599/JGSE.2023.9280007 |
[6] | Xiu-yan Wang, Lin Sun, Shuai-wei Wang, Ming-yu Wang, Jin-qiu Li, Wei-chao Sun, Jing-jing Wang, Xi Zhu, He Di, 2023: Development and application of multi-field coupled high-pressure triaxial apparatus for soil, Journal of Groundwater Science and Engineering, 11, 308-316. doi: 10.26599/JGSE.2023.9280025 |
[7] | Yi-jie Zong, Li-hua Chen, Jian-jun Liu, Yue-hui Liu, Yong-xin Xu, Fu-wan Gan, Liang Xiao, 2022: Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect, Journal of Groundwater Science and Engineering, 10, 311-321. doi: 10.19637/j.cnki.2305-7068.2022.04.001 |
[8] | Wondesen Fikade Niway, Dagnachew Daniel Molla, Tarun Kumar Lohani, 2022: Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004 |
[9] | Hong-bo HAO, Jie LV, Yan-mei CHEN, Chuan-zi WANG, Xiao-rui HUANG, 2021: Research advances in non-Darcy flow in low permeability media, Journal of Groundwater Science and Engineering, 9, 83-92. doi: 10.19637/j.cnki.2305-7068.2021.01.008 |
[10] | Zhao-xian Zheng, Xiao-shun Cui, Pu-cheng Zhu, Si-jia Guo, 2021: Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin, Journal of Groundwater Science and Engineering, 9, 93-101. doi: 10.19637/j.cnki.2305-7068.2021.02.001 |
[11] | Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11. doi: 10.19637/j.cnki.2305-7068.2021.01.001 |
[12] | Van Hoang Nguyen, 2021: Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data, Journal of Groundwater Science and Engineering, 9, 292-303. doi: 10.19637/j.cnki.2305-7068.2021.04.003 |
[13] | Afraz Mehdi, Eftekhari Mobin, Akbari Mohammad, Ali Haji Elyasi, Noghani Zahra, 2021: Application assessment of GRACE and CHIRPS data in the Google Earth Engine to investigate their relation with groundwater resource changes (Northwestern region of Iran), Journal of Groundwater Science and Engineering, 9, 102-113. doi: 10.19637/j.cnki.2305-7068.2021.02.002 |
[14] | YANG Ai-lin, JIANG Si-min, LIU Jin-bing, JIANG Qian-yun, ZHOU Ting, ZHANG Wen, 2020: Groundwater contaminant source identification based on iterative local update ensemble smoother, Journal of Groundwater Science and Engineering, 8, 1-9. doi: 10.19637/j.cnki.2305-7068.2020.01.001 |
[15] | NAN Tian, GUO Si-jia, 2019: Influence of borehole quantity and distribution on lithology field simulation, Journal of Groundwater Science and Engineering, 7, 295-308. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001 |
[16] | SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson, 2019: Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007 |
[17] | LI Xiao-yuan, YUE Gao-fan, SU Ran, YU Juan, 2016: Research on Pisha-sandstone’s anti-erodibility based on grey multi-level comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 103-109. |
[18] | Dana Mawlood, Jwan Mustafa, 2016: Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer, Journal of Groundwater Science and Engineering, 4, 165-173. |
[19] | LIU Chun-lei, YANG Hui-feng, WANG Gui-ling, 2014: Back calculation of soil hydraulic parameters based on HYDRUS-1D, Journal of Groundwater Science and Engineering, 2, 46-53. |
[20] | Patsakron Assiri, 2013: Artesian Flowing Wells Field of Phu Tok Aquifer, Journal of Groundwater Science and Engineering, 1, 95-98. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.