• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 3
Sep.  2021
Turn off MathJax
Article Contents
Liang W, Zhou NQ, Dai CM, et al. 2021. Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater. Journal of Groundwater Science and Engineering, 9(3): 171-180 doi:  10.19637/j.cnki.2305-7068.2021.03.001
Citation: Liang W, Zhou NQ, Dai CM, et al. 2021. Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater. Journal of Groundwater Science and Engineering, 9(3): 171-180 doi:  10.19637/j.cnki.2305-7068.2021.03.001

Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater

doi: 10.19637/j.cnki.2305-7068.2021.03.001
More Information
  • Corresponding author: nq.zhou@tongji.edu.cn
  • Received Date: 2021-05-20
  • Accepted Date: 2021-07-25
  • Available Online: 2021-09-22
  • Publish Date: 2021-09-28
  • Diclofenac (DCF) is one of the most frequently detected pharmaceuticals in groundwater, posing a great threat to the environment and human health due to its toxicity. To mitigate the DCF contamination, experiments on DCF degradation by the combined process of zero-valent iron nanoparticles (nZVI) and nano calcium peroxide (nCaO2) were performed. A batch experiment was conducted to examine the influence of the adding dosages of both nZVI and nCaO2 nanoparticles and pH value on the DCF removal. In the meantime, the continuous-flow experiment was done to explore the sustainability of the DCF degradation by jointly adding nZVI/nCaO2 nanoparticles in the reaction system. The results show that the nZVI/nCaO2 can effectively remove the DCF in the batch test with only 0.05 g/L nZVI and 0.2 g/L nCaO2 added, resulting in a removal rate of greater than 90% in a 2-hour reaction with an initial pH of 5. The degradation rate of DCF was positively correlated with the dosage of nCaO2, and negatively correlated with both nZVI dosage and the initial pH value. The order of significance of the three factors is identified as pH value > nZVI dosage > nCaO2 dosage. In the continuous-flow reaction system, the DCF removal rates remained above 75% within 150 minutes at the pH of 5, with the applied dosages of 0.5 g/L for nZVI and 1.0 g/L for nCaO2. These results provide a theoretical basis for the nZVI/nCaO2 application to remove DCF in groundwater.
  • 加载中
  • Abraham N, Daniel C. 2008. Calcium peroxide (CaO2) for use in modified Fenton chemistry. Journal of Hazardous Materials, 152(3): 1164-1170. doi:  10.1016/j.jhazmat.2007.07.096
    Bin W, Shu-bo D, Jun H, et al. 2013. Environmental risk assessment and control of emerging contaminants in China. Environmental Chemistry(7): 1129-1136. doi:  10.7524/j.issn.0254-6108.2013.07.003
    Einsiedl F, Radke M, Maloszewski P. 2010. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants. Journal of Contaminant Hydrology, 117(1): 26-36. doi:  10.1016/j.jconhyd.2010.05.008
    Forrez I, Carballa M, Verbeken K, et al. 2010. Diclofenac oxidation by biogenic manganese oxides. Environmental Science and Technology, 44(9): 3449-3454. doi:  10.1021/es9027327
    Gomes DS, Gando-Ferreira LM, Quinta-Ferreira RM, et al. 2018. Removal of sulfamethoxazole and diclofenac from water: Strategies involving O3 and H2O2. Environmental Technology, 39(13): 1658-1669. doi:  10.1080/09593330.2017.1335351
    Joo SH, FEITZ AJ, WAITE TD. 2004. Oxidative degradation of the carbothioate herbicide, molinate, using nanosoale zero-valent iron. Environmental Science and Technology, 38(7): 2242-2247. doi:  10.1021/es035157g
    Jurado A, Walther M, Díaz-Cruz MS. 2019. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Science of the Total Environment, 663: 285-296. doi:  10.1016/j.scitotenv.2019.01.270
    Li R, Jin X, Megharaj M, et al. 2015. Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264: 587-594. doi:  10.1016/j.cej.2014.11.128
    Liang W, Dai CM, Zhou XF, et al. 2014. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions. Plos One, 9(1): e85686. doi:  10.1371/journal.pone.0085686
    Liang W, Zhou NQ, Dai C M, et al. 2020. Zero-valent iron nanoparticles and its combined process for diclofenac degradation under various experimental conditions. Polish Journal of Environmental Studies, 30(2): 1279-1288. doi:  10.15244/pjoes/123921
    Mikhailov I, Komarov S, Levina V, et al. 2017. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge. Journal of Hazardous Materials, 321: 557-565. doi:  10.1016/j.jhazmat.2016.09.046
    Muhammad U, Hamidi Abdul A, Mohd Suffian Y. 2010. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Management, 30(11): 2113-2121. doi:  10.1016/j.wasman.2010.07.003
    Mutiyar PK, Gupta SK, Mittal AK. 2018. Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: An ecotoxicological risk assessment approach. Ecotoxicology and Environmental Safety, 150(15): 297-304. doi:  10.1016/j.ecoenv.2017.12.041
    Qian Y, Zhou X, Zhang Y, et al. 2013. Performance and properties of nanoscale calcium peroxide for toluene removal. Chemosphere, 91(5): 717-723. doi:  10.1016/j.chemosphere.2013.01.049
    Schwaiger J, Ferling H, Mallow U, et al. 2004. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68(2): 141-150. doi:  10.1016/j.aquatox.2004.03.014
    Shen J, Ou C, Zhou Z, et al. 2013. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process. Journal of Hazardous Materials, 260: 993-1000. doi:  10.1016/j.jhazmat.2013.07.003
    Shirazi E, Torabian A, Nabi Bidhendi G. 2013. Carbamazepine removal from groundwater: Effectiveness of the TiO2/UV, nanoparticulate zero-valent iron, and Fenton (nZVI/H2O2) processes. Clean - Soil Air Water, 41(11): 1062-1072. doi:  10.1002/clen.201200222
    Singh R, Misra V, Mudiam MKR, et al. 2012. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction condition. Journal of Hazardous Materials, 237-238: 355-364. doi:  10.1016/j.jhazmat.2012.08.064
    Stefaniuk M, Oleszczuk P, Ok YS. 2016. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 287: 618-632. doi:  10.1016/j.cej.2015.11.046
    Sun YP, Li XQ, Cao J, et al. 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3): 47-56. doi:  10.1016/j.cis.2006.03.001
    Vieno N, Sillanpää M. 2014. Fate of diclofenac in municipal wastewater treatment plant – A review. Environment International, 69: 28-39. doi:  10.1016/j.envint.2014.03.021
    Vilardi G, Sebastiani D, Miliziano S, et al. 2018. Heterogeneous nZVI-induced Fenton oxidation process to enhance biodegradability of excavation by-products. Chemical Engineering Journal, 335: 309-320. doi:  10.1016/j.cej.2017.10.152
    Vymazal J, Dvořáková Březinová T, Koželuh M, et al. 2017. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic–the first year of monitoring. Ecological Engineering, 98: 354-364. doi:  10.1016/j.ecoleng.2016.08.010
    Wang HF, Zhao YS, Li TY, et al. 2016. Properties of calcium peroxide for release of hydrogen peroxide and oxygen: A kinetics study. Chemical Engineering Journal, 303: 450-457. doi:  10.1016/j.cej.2016.05.123
    Zhang W, Gao H, He J, et al. 2017. Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway. Separation and Purification Technology, 172: 158-167. doi:  10.1016/j.seppur.2016.08.008
  • [1] Zheng Zhao-xian, Cui Xiao-shun, Zhu Pu-cheng, Guo Si-jia, 2021: Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin, Journal of Groundwater Science and Engineering, 9, 93-101.  doi: 10.19637/j.cnki.2305-7068.2021.02.001
    [2] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique, 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [3] LI Yang, KANG Feng-Xin, ZOU An-de, 2019: Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154.
    [4] ZHOU Chang-song, ZOU Sheng-zhang, ZHU Dan-ni, XIE Hao, CHEN Hong-feng, WANG Jia, 2018: Pollution pattern of underground river in karst area of the Southwest China, Journal of Groundwater Science and Engineering, 6, 71-83.
    [5] WU Ting-wen, WANG Li-huan, WANG Lin-shu, KONG Qing-xuan, 2018: Evaluation of groundwater quality and pollution in Daqing Oilfield, Journal of Groundwater Science and Engineering, 6, 40-48.  doi: 10.19637/j.cnki.2305-7068.2018.01.005
    [6] LIU Shu-yuan, WANG Hong-qi, 2016: Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [7] Ramasamy Jayakumar, 2015: Groundwater level monitoring-importance global groundwater monitoring network, Journal of Groundwater Science and Engineering, 3, 295-305.
    [8] CHENG Yan-pei, DONG Hua, 2015: Groundwater system division and compilation of Groundwater Resources Map of Asia, Journal of Groundwater Science and Engineering, 3, 127-135.
    [9] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen, 2015: Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185.
    [10] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [11] YANG Yun, WU Jian-feng, LIU De-peng, 2015: Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China, Journal of Groundwater Science and Engineering, 3, 352-362.
    [12] WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li, 2015: Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong, Journal of Groundwater Science and Engineering, 3, 342-350.
    [13] YANG Li-zhi, LIU Chun-hua, 2015: Study on the characteristics and causes of carbon tetrachloride pollution of karst water in eastern suburbs of Jinan, Journal of Groundwater Science and Engineering, 3, 331-341.
    [14] DAI Wen-Bin, ZHANG Wei-Jun, COWEN Taha, 2015: An analysis of River Derwent pollution and its impacts, Journal of Groundwater Science and Engineering, 3, 39-44.
    [15] LI Hui, HAN Zhan-tao, MA Chun-xiao, GUI Jian-ye, 2015: Comparison of 1,2,3-Trichloropropane reduction and oxidation by nanoscale zero-valent iron, zinc and activated persulfate, Journal of Groundwater Science and Engineering, 3, 156-163.
    [16] Kang-qin HAN, Ri-sheng DUAN, Liang-liang JIA, Yuan-yuan DUAN, Min-ying FENG, 2014: Analysis on Present Status of Underground Water Pollution in Shijiazhuang and Its Prevention Measures, Journal of Groundwater Science and Engineering, 2, 44-48.
    [17] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
    [18] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner, 2013: Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
    [19] Tong Yuanqing, Liu Li, Wang? Xiuming, Li Yingzhi, 2013: Revision of Handbook of Hydrogeology (2nd Edition), Journal of Groundwater Science and Engineering, 1, 41-47.
    [20] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu, 2013: Urban Waste Disposal and Its Impact on Groundwater Pollution in China, Journal of Groundwater Science and Engineering, 1, 88-95.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (872) PDF downloads(86) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint