• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Nasiri S, Ansari H, Ziaei AN. 2022. Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran. Journal of Groundwater Science and Engineering, 10(1): 44-56 doi:  10.19637/j.cnki.2305-7068.2022.01.005
Citation: Nasiri S, Ansari H, Ziaei AN. 2022. Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran. Journal of Groundwater Science and Engineering, 10(1): 44-56 doi:  10.19637/j.cnki.2305-7068.2022.01.005

Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran

doi: 10.19637/j.cnki.2305-7068.2022.01.005
More Information
  • Corresponding author: ansary@um.ac.ir
  • Received Date: 2021-02-05
  • Accepted Date: 2021-10-18
  • Available Online: 2022-03-24
  • Publish Date: 2022-03-15
  • Increasing water demands, especially in arid and semi-arid regions, continuously exacerbate groundwater as the only reliable water resources in these regions. Samalqan watershed, Iran, is a groundwater-based irrigation watershed, so that increased aquifer extraction, has caused serious groundwater depletion. So that the catchment consists of surface water, the management of these resources is essential in order to increase the groundwater recharge. Due to the existence of rivers, the low thickness of the alluvial sediments, groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed, the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin. For this purpose, the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU (Hydrological Response Unit) on the specified day. Since the study area has pressing challenges related to water deficit and sparsely gauged, therefore, this investigation looks actual for regional scale analysis. Model evaluation criteria, RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1% respectively. Also, the simulation of surface water flow at the basin outlet, provided satisfactory prediction (R2=0.92, NSE=0.85). Results showed that, the irrigation has affected the surface and groundwater interactions in the watershed, where agriculture heavily depends on irrigation. Annually 11.64 Mm3 water entered to the aquifer by surface recharge (precipitation, irrigation), transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow (annually 20.5 Mm3). Water output in the watershed included ground water extraction and groundwater return flow (annually 46.4 Mm3) and ground water boundary flow (annually 0.68 Mm3). Overally, the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer. This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.
  • 加载中
  • Abbaspour KC, J Yang, Maximov I, et al. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, 333(2-4): 413-430. doi:  10.1016/j.jhydrol.2006.09.014
    Anderson MP, Woessner WW, Hunt RJ. 1992. Applied groundwater modeling: Simulation of flow and advective transport. Academic Press Inc. , San Diego, CA. Journal of Hydrology, 140: 393-395.
    Arnold JG, Moriasi DN, Gassman PW, et al. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE 55 (4): 1491-1508.
    Borsi I, R Rossetto C, Schifani, et al. 2013. Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package. Journal of hydrology, 488: 33-47. doi:  10.1016/j.jhydrol.2013.02.020
    Cao GL, Zheng CM, Scanlon BR , et al. 2013. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resources Research, 49(1): 159-175. doi:  10.1029/2012WR011899
    Chakraborty S, Maity PK, Das S. 2020. Investigation, simulation, identification and prediction of groundwater levels in coastal areas of Purba Midnapur, India, using MODFLOW. Environment, Development and Sustainability, 22, (4): 3805-3837.
    Chatterjee R, Jain A, Chandra S, et al. 2018. Mapping and management of aquifers suffering from over-exploitation of groundwater resources in Baswa-Bandikui watershed, Rajasthan, India. Environmental Earth Sciences, 77(5): 1-14.
    Cho J, Barone V, Mostaghimi S. 2009. Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed. Agricultural water management, 96(1): 1-11. doi:  10.1016/j.agwat.2008.07.005
    Daloğlu I, JI Nassauer R Riolo, Scavia D. 2014. An integrated social and ecological modeling framework—Impacts of agricultural conservation practices on water quality. Ecology and Society, 19 (3).
    Epting J, Müller MH, Genske D, et al. 2018. Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management. Applied Energy, 228: 1499-1505. doi:  10.1016/j.apenergy.2018.06.154
    Gassman PW, Reyes MR, Green CH, et al. 2007. The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE 50 (4): 1211-1250.
    Iran Water Resources Management Company. Available online: https://www.wrm.ir (accessed on 23 April 2019).
    Jalut QH, Abbas NL, Mohammad AT. 2018. Management of groundwater resources in the Al-Mansourieh zone in the Diyala River Basin in Eastern Iraq. Groundwater for Sustainable Development, 6: 79-86. doi:  10.1016/j.gsd.2017.11.004
    Karimi L, Motagh M, Entezam I. 2019. Modeling groundwater level fluctuations in Tehran aquifer: Results from a 3D unconfined aquifer model. Groundwater for Sustainable Development, 8: 439-449. doi:  10.1016/j.gsd.2019.01.003
    Khalili K, Tahoudi MN, Mirabbasi R, et al. 2016. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic environmental research and risk assessment, 30(4): 1205-1221. doi:  10.1007/s00477-015-1095-4
    Llamas MR, Custodio E. 2002. Intensive Use of Groundwater: Challenges and Opportunities: CRC Press.
    Lobo-Ferreira J, Chachadi A, Diamantino C, et al. 2005. Assessing aquifer vulnerability to seawater intrusion using GALDIT Method. Part 1: Application to the Portuguese aquifer of Monte Gordo.
    McDonald MG, Harbaugh AW. 1988. A modular three-dimensional finite-difference ground-water flow model: US Geological Survey.
    Meredith E, Blais N. 2019. Quantifying irrigation recharge sources using groundwater modeling. Agricultural water management, 214: 9-16. doi:  10.1016/j.agwat.2018.12.032
    Mojarrad BB, Betterle A, T Singh C Olid, et al. 2019. The effect of stream discharge on hyporheic exchange. Water, 11(7): 1436. doi:  10.3390/w11071436
    Moriasi DN, Arnold JG, Van Liew MW, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50 (3): 885-900.
    Moridi A, Tabatabaie MRM, Esmaeelzade S. 2018. Holistic approach to sustainable groundwater management in semi-arid regions. International Journal of Environmental Research, 12(3): 347-355. doi:  10.1007/s41742-018-0080-4
    Nan T, Li K, Wu J, et al. 2018. Assessment of groundwater exploitation in an aquifer using the random walk on grid method: A case study at Ordos, China. Hydrogeology journal, 26(5): 1669-1681. doi:  10.1007/s10040-018-1762-x
    Pholkern K, P Saraphirom V Cloutier, et al. 2019. Use of alternative hydrogeological conceptual models to assess the potential impact of climate change on groundwater sustainable yield in central Huai Luang Basin, Northeast Thailand. Water, 11(2): 241. doi:  10.3390/w11020241
    Qiu SW, Liang XJ, Xiao CL, et al. 2015. Numerical simulation of groundwater flow in a river valley basin in Jilin urban area, China. Water, 7(10): 5768-5787. doi:  10.3390/w7105768
    Rejani R, Jha MK, Panda S, et al. 2008. Simulation modeling for efficient groundwater management in Balasore coastal basin, India. Water Resources Management, 22(1): 23-50. doi:  10.1007/s11269-006-9142-z
    Sattari MTR Mirabbasi, Sushab RS, Abraham J. 2018. Prediction of groundwater level in Ardebil plain using support vector regression and M5 tree model. Groundwater, 56(4): 636-646. doi:  10.1111/gwat.12620
    Su XS, Yuan WZ, SH Du, et al. 2017. Responses of groundwater vulnerability to groundwater extraction reduction in the Hun River Basin, northeastern China. Human and Ecological Risk Assessment:An International Journal, 23(5): 1121-1139. doi:  10.1080/10807039.2017.1300858
    Tabios III GQ, Salas JD. 1985. A comparative analysis of techniques for spatial interpolation of precipitation 1. Journal of the American Water Resources Association, 21(3): 365-380. doi:  10.1111/j.1752-1688.1985.tb00147.x
    Thangarajan M. 2007. Groundwater: Resource evaluation, augmentation, contamination, restoration, modeling and management: Springer Science & Business Media.
    Xue S, Liu Y, Liu SL, et al. 2018. Numerical simulation for groundwater distribution after mining in Zhuanlongwan mining area based on visual MODFLOW. Environmental Earth Sciences, 77(11): 1-9.
  • Relative Articles

    [1] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118.  doi: 10.26599/JGSE.2024.9280009
    [2] Rui-fang Meng, Hui-feng Yang, Xi-lin Bao, Bu-yun Xu, Hua Bai, Jin-cheng Li, Ze-xin Liang, 2023: Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China, Journal of Groundwater Science and Engineering, 11, 133-145.  doi: 10.26599/JGSE.2023.9280012
    [3] Qiang Liu, Xiao-dong Guo, Chang-qi Wang, Nan Lin, Hui-rong Zhang, Lin Chen, Yan Zhang, 2023: Changes in groundwater resources and their influencing factors in Songnen Plain, China, Journal of Groundwater Science and Engineering, 11, 207-220.  doi: 10.26599/JGSE.2023.9280018
    [4] Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [5] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [6] Wondmagegn Taye Abebe, 2022: Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222.  doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [7] Han Zhang, Zong-yu Chen, Chang-yuan Tang, 2021: Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232.  doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [8] Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11.  doi: 10.19637/j.cnki.2305-7068.2021.01.001
    [9] Van Viet Luong, 2021: Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam, Journal of Groundwater Science and Engineering, 9, 20-36.  doi: 10.19637/j.cnki.2305-7068.2021.01.003
    [10] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [11] Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29.  doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [12] Abdullah Al Jami, Meher Uddin Himel, Khairul Hasan, Shilpy Rani Basak, Ayesha Ferdous Mita, 2020: NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh, Journal of Groundwater Science and Engineering, 8, 118-126.  doi: 10.19637/j.cnki.2305-7068.2020.02.003
    [13] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [14] XU Jun-xiang, WANG Shao-juan, LI Chang-suo, XING Li-ting, 2019: Numerical analysis and evaluation of groundwater recession in a flood detention basin, Journal of Groundwater Science and Engineering, 7, 253-263.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.006
    [15] A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [16] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze, 2017: Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [17] NAN Tian, SHAO Jing-li, CUI Ya-li, 2016: Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [18] HUANG Xiao-qin, YU Yan-qing, SUN Yong-liang, 2014: Construction of ecological environment of oasis in Qingtongxia Irrigation District, Journal of Groundwater Science and Engineering, 2, 78-84.
    [19] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan, 2014: The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [20] Qiao Li, Jin-long Zhou, Shun-jun Hu, Bin-guo Wang, Rui-liang Jia, 2013: Evaluation on Groundwater Resources of Medium Salinity in Tarim Basin and Development and Demonstration of Under-mulch-drip Irrigation Technology for Cotton, Journal of Groundwater Science and Engineering, 1, 10-21.
  • 加载中


    Figures(13)  / Tables(4)

    Article Metrics

    Article views (554) PDF downloads(43) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint