• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Sun L, Wang SW, Guo CJ, et al. 2022. Using pore-solid fractal dimension to estimate residual LNAPLs saturation in sandy aquifers: A column experiment. Journal of Groundwater Science and Engineering, 10(1): 87-98 doi:  10.19637/j.cnki.2305-7068.2022.01.008
Citation: Sun L, Wang SW, Guo CJ, et al. 2022. Using pore-solid fractal dimension to estimate residual LNAPLs saturation in sandy aquifers: A column experiment. Journal of Groundwater Science and Engineering, 10(1): 87-98 doi:  10.19637/j.cnki.2305-7068.2022.01.008

Using pore-solid fractal dimension to estimate residual LNAPLs saturation in sandy aquifers: A column experiment

doi: 10.19637/j.cnki.2305-7068.2022.01.008
More Information
  • Corresponding author: Tairan_W@163.com
  • Received Date: 2021-04-12
  • Accepted Date: 2022-01-19
  • Available Online: 2022-03-24
  • Publish Date: 2022-03-15
  • : The“tailing” effect caused by residual non-aqueous phase liquids (NAPLs) in porous aquifers is one of the frontiers in pollution hydrogeology research. Based on the current knowledge that the residual NAPLs is mainly controlled by the pore structure of soil, this study established a method for evaluating the residual saturation of NAPLs by investigating the fractal dimension of porous media. In this study, the soil column experiments of residual light NAPLs (LNAPLs) in sandy aquifer with different ratios of sands and soil were carried out, and the correlation between the fractal dimension of the medium, the residual of LNAPLs and the soil structure parameters are statistically analyzed, and its formation mechanism and main control factors are discussed. The results show that: Under our experimental condition: (1) the fractal dimension of the medium has a positive correlation with the residual saturation of NAPLs generally, and the optimal fitting function can be described by a quadratic model: ${S_R} = {\text{192}}{\text{.02}}{D^2} - 890.73D + {\text{1 040}}{\text{.8}}$; (2) the dominant formation mechanism is: Smaller pores in the medium is related to larger fractal dimension, which leads to higher residual saturation of NAPLs; stronger heterogeneity of the medium is related to larger fractal dimension, which also leads to higher residual saturation of NAPLs; (3) the micro capillary pores characterized by fine sand are the main controlling factors of the formation mechanism. It is concluded that both the theory and the method of using fractal dimension of the medium to evaluate the residual saturation of NAPLs are feasible. This study provides a new perspective for the research of “tailing” effect of NAPLs in porous media aquifer.
  • 加载中
  • Celia MA, Reeves PC, Ferrand LA. 1995. Recent advances in pore scale models for multiphase flow in porous media. Reviews of Geophysics, 33(S2): 1049-1057. doi:  10.1029/95RG00248
    Cheng Y, Zhu J. 2021. Significance of mass–concentration relation on the contaminant source depletion in the nonaqueous phase liquid (NAPL) contaminated zone. Transport in Porous Media, 137(2): 399-416. (in Chinese) doi:  10.1007/s11242-021-01567-5
    Cheng Z, Wu JC, Xu HX, et al. 2014. Migration of DNAPL under the action of lens and surfactant. China Environmental Science, 34(11): 2888-2896. (in Chinese) doi:  10.3969/j.issn.1000-6923.2014.11.028
    Costa A. 2006. Permeability‐porosity relationship: A reexamination of the Kozeny‐Carman equation based on a fractal pore‐space geometry assumption. Geophysical research letters, 33(2): L02318. doi:  10.1029/2005GL025134
    Ezeh CG. 2019. Novel ideas for enhanced oil recovery and oil spill remediation in porous media. Tulane University School of Science and Engineering.
    Feng XD, Zhang Y, Ma YF, et al. 2019. Research status of NAPLs seepage characteristics and models in porous media. Journal of Shandong University of Technology (Natural Science Edition), 33(04): 15-18+23. (in Chinese) doi:  10.13367/j.cnki.sdgc.2019.04.003
    Forsyth PA, Shao BY. 1991. Numerical simulation of gas venting for NAPL site remediation. Advances in Water Resources, 14(6): 354-367. doi:  10.1016/0309-1708(91)90022-G
    Fetter CW, Boving TB, Kreamer DK. 1999. Contaminant hydrogeology. Upper Saddle River: Prentice hall: 178-218.
    Gao F, Liu F, Chen H H. 2008. Research progress on remediation of trichloroethylene-contaminated soil and groundwater pollution source areas. Advances in Earth Science, 23(08): 39-47. (in Chinese) doi:  10.3321/j.issn:1001-8166.2008.08.005
    Guo WM, Li ZP, Jia GL, et al. 2014. Quantitative interpretation of residual oil microdistribution and study on pore microstructure changes. Science Technology and Engineering(31): 32-36. (in Chinese) doi:  10.3969/j.issn.1671-1815.2014.31.006
    Han H, Ding Z, Dong C, et al. 2018. Fractal characteristics of bulk-mudrock, washed, and kerogen samples of Chang 7 member mudrocks from the Ordos Basin, China. Journal of Petroleum Science and Engineering, 170: 592-606. (in Chinese) doi:  10.1016/j.petrol.2018.07.004
    Hayden N, Diebold J, Farrell C, et al. 2006. Characterization and removal of DNAPL from sand and clay layered media. Journal of Contaminant Hydrology, 86(1/2): 53-71. doi:  10.1016/j.jconhyd.2006.02.008
    Hou ZY, Wang Y, Lu WX. 2019. An alternative model for multiphase flow simulation for groundwater DNAPLs pollution remediation. China Environmental Science, 39(7): 2913-2920. (in Chinese) doi:  10.3969/j.issn.1000-6923.2019.07.027
    Hunt JR, Sitar N, Udell KS. 1988. Nonaqueous phase liquid transport and cleanup: 1. Analysis of mechanisms. Water Resources Research, 24(8): 1247-1258. doi:  10.1029/WR024i008p01247
    Jia FS, Shen PP, Li KW. Fractal characteristics and application of sandstone pore structure. Fault Block Oil and Gas Field, 1995, 02(1): 16-21. (in Chinese).
    Kacem M, Esrael D, Boeije CS, et al. 2019. Multiphase flow model for NAPL infiltration in both the unsaturated and saturated zones. Journal of Environmental Engineering, 145(11): 04019072. doi:  10.1061/(ASCE)EE.1943-7870.0001586
    Karaoglu AG, Copty NK, Akyol NH, et al. 2019. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution. Journal of contaminant hydrology, 225: 103515. doi:  10.1016/j.jconhyd.2019.103515
    Kemblowski MW, Wen JC. 1993. Contaminant spreading in stratified soils with fractal permeability distribution. Water resources research, 29(2): 419-425. doi:  10.1029/92WR01861
    Khasi S, Ramezanzadeh M, Ghazanfari MH. 2020. Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media. Journal of contaminant hydrology, 228: 103565. doi:  10.1016/j.jconhyd.2019.103565
    Le YX, Wang CJ. 2004. Using fractal conditional simulation and streamline model to predict the distribution of remaining oil and gas saturation. Natural Gas Geoscience, 15(1): 42-46. (in Chinese) doi:  10.3969/j.issn.1672-1926.2004.01.008
    Lei G, Mo S, Dong Z, et al. 2018. Theoretical and experimental study on stress-dependency of oil–water relative permeability in fractal porous media. Fractals, 26(02): 1840010. (in Chinese) doi:  10.1142/S0218348X18400108
    Li HY, Du XM, Yang B, et al. 2013. Capillary fingering morphology and fractal characterization of NAPLs fluids in porous media. Environmental Science (10): 334-341. (in Chinese)
    Li ZF, He SL, Yang WX, et al. 2006. Microphysical simulation of water flooding experiment and research on fractal characteristics of residual oil distribution. Journal of China University of Petroleum (Natural Science Edition), (03): 75-79, 84. (in Chinese).
    Liu HY, Tian ZY, Xu ZY. 2017. Quantitative evaluation of pore structure of carbonate reservoirs based on fractal characteristics. Lithologic Reservoirs, (5): 97-105. (in Chinese).
    Mackay D, Shiu WY, Maijanen A, et al. 1991. Dissolution of non-aqueous phase liquids in groundwater. Journal of Contaminant Hydrology, 8(1): 23-42. doi:  10.1016/0169-7722(91)90007-N
    Mackay DM, Cherry JA. 1989. Groundwater contamination: pump-and-treat remediation. Environmental Science & Technology, 23(6): 630-636. doi:  10.1021/es00064a001
    Mateas DJ, Tick GR, Carroll KC. 2017. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater. Journal of contaminant hydrology, 204: 40-56. doi:  10.1016/j.jconhyd.2017.07.007
    Mukhopadhyay S, Cushman JH. 1998. Diffusive transport of volatile pollutants in nonaqueous-phase liquid contaminated soil: A fractal model. Transport in porous media, 30(2): 125-154. doi:  10.1023/A:1006554303400
    Neuman SP. 1995. On advective transport in fractal permeability and velocity fields. Water Resources Research, 31(6): 1455-1460. doi:  10.1029/95WR00426
    Patmonoaji A, Muharrik M, Hu Y, et al. 2020. Three-dimensional fingering structures in immiscible flow at the crossover from viscous to capillary fingering. International Journal of Multiphase Flow, 122: 103147. doi:  10.1016/j.ijmultiphaseflow.2019.103147
    Ramezanzadeh M, Khasi S, Fatemi M, et al. 2020. Remediation of trapped DNAPL enhanced by SDS surfactant and silica nanoparticles in heterogeneous porous media: Experimental data and empirical models. Environmental Science and Pollution Research, 27(3): 2658-2669. doi:  10.1007/s11356-019-07194-4
    Rane K S, Goual L, Zhang B. 2020. Graphene wuantum dots for the mobilization and solubilization of nonaqueous phase liquids in natural porous media. ACS Applied Nano Materials, 3(11): 10691-10701. doi:  10.1021/acsanm.0c01937
    Saripalli KP, Rao PSC, Annable MD. 1998. Determination of specific NAPL-water interfacial areas of residual NAPLs in porous media using the interfacial tracers technique. Journal of contaminant hydrology, 30(3-4): 375-391. doi:  10.1016/S0169-7722(97)00052-1
    Soto MAA, Lenhard R, Chang HK, et al. 2019. Determination of specific LNAPL volumes in soils having a multimodal pore-size distribution. Journal of environmental management, 237: 576-584. doi:  10.1016/j.jenvman.2019.02.077
    Wang X, Lanning LM, Ford RM. 2016. Enhanced retention of chemotactic bacteria in a pore network with residual NAPL contamination. Environmental science & technology, 50(1): 165-172. doi:  10.1021/acs.est.5b03872
    White MD, Oostrom M, Lenhard RJ. 2004. A practical model for mobile, residual, and entrapped NAPL in water‐wet porous media. Groundwater, 42(5): 734-746. doi:  10.1111/j.1745-6584.2004.tb02727.x
    Wiedemeier, Todd H. 1999. Natural attenuation of fuels and chlorinated solvents in the subsurface. New York: John Wiley.
    Yang K, Xu SY. 2009. Research on microscopic residual oil experimental method. Fault block oil and gas fields, 16(4). (in Chinese) Doi: CNKI: SUN: DKYT.0.2009-04-026.
    Yu BM. 2003. Research progress on fractal analysis of transport properties in porous media. Advances in Mechanics, 33(3): 333-346. (in Chinese) doi:  10.3321/j.issn:1000-0992.2003.03.005
    Zhang GH, Ren XJ. 2011. Fractal characteristics of pore structure in low-permeability reservoirs and its influence on water flooding efficiency. Petroleum Geology and Oilfield Development in Daqing, 30(2): 94-99. (in Chinese) doi:  10.3969/J.ISSN.1000-3754.2011.02.019
    Zhang FC, Kang SZ. 2007. Research progress on the migration of non-aqueous fluids in porous media. Journal of Soil Sciences(04): 170-177. (in Chinese)
    Zhang XG, Zhang T, Lin CY. 2013. Pore structure evaluation of low permeability reservoirs based on pore fractal characteristics. Lithologic Reservoirs, 25(6): 40-45. (in Chinese)
    Zhao YS, Han HH, Chi ZF, et al. 2018. Study on the effect of permeability difference on the migration of pollutants in low-permeability lenses. China Environmental Science, 38(12): 4559-4565. (in Chinese) doi:  10.3969/j.issn.1000-6923.2018.12.021
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office.

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

  • Relative Articles

    [1] Yi-jie Zong, Li-hua Chen, Jian-jun Liu, Yue-hui Liu, Yong-xin Xu, Fu-wan Gan, Liang Xiao, 2022: Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect, Journal of Groundwater Science and Engineering, 10, 311-321.  doi: 10.19637/j.cnki.2305-7068.2022.04.001
    [2] Chu Yu, Li-jie Wu, Yi-long Zhang, Xiu-ya Wang, Zhan-chuan Wang, Zhou Zhang, 2022: Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau, Journal of Groundwater Science and Engineering, 10, 353-366.  doi: 10.19637/j.cnki.2305-7068.2022.04.004
    [3] She-ming Chen, Hong-wei Liu, Fu-tian Liu, Jin-jie Miao, Xu Guo, Zhou Zhang, Wan-jun Jiang, 2022: Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China, Journal of Groundwater Science and Engineering, 10, 292-301.  doi: 10.19637/j.cnki.2305-7068.2022.03.007
    [4] Ya-ci Liu, Zhao-ji Zhang, Xin-yi Zhao, Meng-tuo Wen, Sheng-wei Cao, Ya-song Li, 2021: Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment, Journal of Groundwater Science and Engineering, 9, 304-316.  doi: 10.19637/j.cnki.2305-7068.2021.04.004
    [5] Fei Gao, Feng Liu, Hua-jun Wang, 2021: Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures, Journal of Groundwater Science and Engineering, 9, 233-244.  doi: 10.19637/j.cnki.2305-7068.2021.03.006
    [6] Yu-fei Xi, Ya-bo Zhao, DA Yuen, 2021: Geothermal structure revealed by curie isothermal surface under Guangdong Province, China, Journal of Groundwater Science and Engineering, 9, 114-120.  doi: 10.19637/j.cnki.2305-7068.2021.02.003
    [7] Prusty Rabiranjan, Biswal Trinath, 2020: Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India, Journal of Groundwater Science and Engineering, 8, 338-348.  doi: 10.19637/j.cnki.2305-7068.2020.04.004
    [8] MENG Yong-hui, WANG Ji-ning, YU De-Jie, ZHANG Li-xia, FENG Zai-min, YAN Tang, ZHOU Yong, 2019: Effect of saltwater intrusion on groundwater environment in Weihe River downstream, Shandong Province, China, Journal of Groundwater Science and Engineering, 7, 245-252.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.005
    [9] SONG Ang, LIANG Yue-ming, LI Qiang, 2018: Influence of precipitation on bacterial structure in a typical karst spring, SW China, Journal of Groundwater Science and Engineering, 6, 193-204.  doi: 10.19637/j.cnki.2305-7068.2018.03.005
    [10] SHANG Man-ting, LIU Pei-gui, LEI Chao, LIU Ming-chao, WU Liang, 2017: Effect of climate change on the trends of evaporation of phreatic water from bare soil in Huaibei Plain, China, Journal of Groundwater Science and Engineering, 5, 213-221.
    [11] LI Man, ZHANG Wei, HE Yu-jiang, WANG Gui-ling, 2017: Research on the effect of straw mulching on the soil moisture by field experiment in the piedmont plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 5, 286-295.
    [12] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan, 2017: Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [13] LU Yao-ru, ZHANG Wei, LIU Qi, YANG Min, ZHANG Feng-e, 2016: Building a scientific and ecological earth–on an important field of geo-science: Geo-environment and construction engineering effect, Journal of Groundwater Science and Engineering, 4, 259-278.
    [14] HE Hong, GUO Hong-bin, LIU Hong-yun, 2014: Analysis of effect of water construction in different phases on groundwater environment, Journal of Groundwater Science and Engineering, 2, 54-59.
    [15] Xiu-yan WANG, Yu-hong FEI, 2014: Environmental Effect Caused by Over-exploitation of Deep Groundwater in North China, Journal of Groundwater Science and Engineering, 2, 12-20.
    [16] Changli Liu, Yun Zhang, Chao Song, Hongbing Hou, 2013: Effect of Farmyard Manure Application on Dissolution of Carbonate Rocks and Its Eco-environmental Impact, Journal of Groundwater Science and Engineering, 1, 60-69.
    [17] Shi-jie Xie, Qiang Zhang, Yu-chong Qiu, 2013: Simulation and Prediction of the Fluorides Migration in a Tailing Pond Using Modflow, Journal of Groundwater Science and Engineering, 1, 33-39.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (271) PDF downloads(28) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint