• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 3
Sep.  2022
Turn off MathJax
Article Contents
Guo XJ, Wang WZ, Li CX, et al. 2022. Temporal variations of reference evapotranspiration and controlling factors: Implications for climatic drought in karst areas. Journal of Groundwater Science and Engineering, 10(3): 267-284 doi:  10.19637/j.cnki.2305-7068.2022.03.005
Citation: Guo XJ, Wang WZ, Li CX, et al. 2022. Temporal variations of reference evapotranspiration and controlling factors: Implications for climatic drought in karst areas. Journal of Groundwater Science and Engineering, 10(3): 267-284 doi:  10.19637/j.cnki.2305-7068.2022.03.005

Temporal variations of reference evapotranspiration and controlling factors: Implications for climatic drought in karst areas

doi: 10.19637/j.cnki.2305-7068.2022.03.005
More Information
  • Corresponding author: ww@mail.cgs.gov.cn
  • Received Date: 2021-11-06
  • Accepted Date: 2022-06-18
  • Publish Date: 2022-09-15
  • Variations in reference evapotranspiration (ET0) and drought characteristics play a key role in the effect of climate change on water cycle and associated ecohydrological patterns. The accurate estimation of ET0 is still a challenge due to the lack of meteorological data and the heterogeneity of hydrological system. Although there is an increasing trend in extreme drought events with global climate change, the relationship between ET0 and aridity index in karst areas has been poorly studied. In this study, we used the Penman–Monteith method based on a long time series of meteorological data from 1951 to 2015 to calculate ET0 in a typical karst area, Guilin, Southwest China. The temporal variations in climate variables, ET0 and aridity index (AI) were analyzed with the Mann–Kendall trend test and linear regression to determine the climatic characteristics, associated controlling factors of ET0 variations, and further to estimate the relationship between ET0 and AI. We found that the mean, maximum and minimum temperatures had increased significantly during the 65-year study period, while sunshine duration, wind speed and relative humidity exhibited significant decreasing trends. The annual ET0 showed a significant decreasing trend at the rate of −8.02 mm/10a. However, significant increase in air temperature should have contributed to the enhancement of ET0, indicating an “evaporation paradox”. In comparison, AI showed a slightly declining trend of −0.0005/a during 1951–2015. The change in sunshine duration was the major factor causing the decrease in ET0, followed by wind speed. AI had a higher correlation with precipitation amount, indicating that the variations of AI was more dependent on precipitation, but not substantially dependent on the ET0. Although AI was not directly related to ET0, ET0 had a major contribution to seasonal AI changes. The seasonal variations of ET0 played a critical role in dryness/wetness changes to regulate water and energy supply, which can lead to seasonal droughts or water shortages in karst areas. Overall, these findings provide an important reference for the management of agricultural production and water resources, and have an important implication for drought in karst regions of China.
  • 加载中
  • Allen RG, Pereira LS, Rass D, et al. 1998. Corp evapotranspiration guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Food and Agriculture Origanization of the United Nation: Rome.
    Breña-Naranjo JA, Laverde-Barajas MÁ, Pedrozo-Acuña A. 2017. Changes in pan evaporation in Mexico from 1961-2010. International Journal of Climatology, 37: 204−213. doi:  10.1002/joc.4698
    Burn DH, Hesch NM. 2007. Trends in evaporation for Canadian Prairies. Journal of Hydrology, 336: 61−73.
    Cao JH, Wu X, Huang F, et al. 2018. Global significance of the carbon cycle in the karst dynamic system: Evidence from geological and ecological processes. China Geology, 1: 17−27.
    Chattopadhyay N, Hulme M. 1997. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology, 87: 55−73.
    Chai RF, Sun SL, Chen HS, et al. 2018. Changes in reference evapotranspiration over China during 1960-2012: Attributions and relationships with atmospheric circulation. Hydrological Processes, 32: 3032−3048.
    Chen XZ, Liu XD, Zhou GY, et al. 2015. 50-year evapotranspiration declining and potential causations in subtropical Guangdong province, southern China. Catena, 128: 185−194.
    Chen X, Buchberger SG. 2018. Exploring the relationships between warm-season precipitation, potential evaporation, and “apparent” potential evaporation at site scale. Hydrology and Earth System Sciences, 22: 4535−4545.
    Dadaser-Celik F, Cengiz E, Guzel O. 2016. Trends in reference evapotranspiration in Turkey: 1975-2006. International Journal of Climatology, 36: 1733−1743.
    Du CY, Yu JJ, Wang P, et al. 2016. Reference evapotranspiration changes: Sensitivities to and contributions of meteorological factors in the Heihe River Basin of Northwestern China (1961-2014). Advances in Meteorology: 1−17.
    Deng SL, Chen T, Yang N, et al. 2018. Spatial and temporal distribution of rainfall and drought characteristics across the Pearl River Basin. Science of the Total Environment, 619-620: 28−41.
    Fan ZX, Thomas A. 2013. Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961-2004. Climatic Change, 116: 309−325. doi:  10.1007/s10584-012-0479-4
    Fan JL, Wu LF, Zhang FC, et al. 2016. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956-2015. Journal of Hydrology, 542: 923−937. doi:  10.1016/j.jhydrol.2016.09.060
    Fan ZX, Thomas A. 2018. Decadal changes of reference crop evapotranspiration attribution: Spatial and temporal variability over China 1960-2011. Journal of Hydrology, 560: 461−470.
    Feng Y, Cui NB, Wei XP, et al. 2014. Temporal-spatial distribution characteristics and causes analysis of reference crop evapotranspiration in hilly area of central Sichuan. Transactions of the Chinese Society of Agricultural Engineering, 30(14): 78−86.
    Feng Y, Cui NB, Zhao L, et al. 2017. Spatiotemporal variation of reference evapotranspiration during 1954−2013 in Southwest China. Quaternary International, 441: 129−139. doi:  10.1016/j.quaint.2017.01.023
    Fisher JB, Melton F, Middleton E, et al. 2017. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water resources research, 53(4): 2618−2626.
    Fu GB, Charles SP, Yu JJ. 2009. A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 97: 193−214. doi:  10.1007/s10584-009-9579-1
    Fu GB, Yu JJ, Zhang YC, et al. 2011. Temporal variation of wind speed in China for 1961-2007. Theor Appl Climatol, 104: 313−324.
    Gao XL, Peng SZ, Wang WG, et al. 2016. Spatial and temporal distribution characteristics of reference evapotranspiration trends in Karst area: A case study in Guizhou Province, China. Meteorol Atmos Phys, 128: 677−688.
    Gao ZD, He JS, Dong KB, et al. 2017. Trends in reference evapotranspiration and their causative factors in the West Liao River Basin, China. Agricultural and Forest Meteorology, 232: 106−117. doi:  10.1016/j.agrformet.2016.08.006
    Gong CC, Wang WK, Zhang ZY, et al. 2020. Comparison of field methods for estimating evaporation from bare soil using lysimeters in a semi-arid area. Journal of Hydrology, 590: 125334.
    Guo XJ, Jiang GH, Gong XP, et al. 2015. Recharge processes on typical karst slopes implied by isotopic and hydrochemical indexes in Xiaoyan Cave, Guilin, China. Journal of Hydrology, 530: 612−622.
    Huo ZL, Dai XQ, Feng SY, et al. 2013. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology, 492: 24−34.
    Irmak S, Kabenge I, Skaggs KE, et al. 2012. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska-USA. Journal of Hydrology, 420-421: 228−244.
    Jiang Y, Luo Y, Zhao ZC, et al. 2010. Changes in wind speed over China during 1956-2004. Theoretical Appllied Climatology, 99: 421−430.
    Jung M, Reichstein MCP, Seneviratne SI, et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951−954.
    Kendall MG. 1975. Rank Correlation Methods. Charles Griffin: London.
    Li ZX, He YQ, An WL, et al. 2011. Climate and glacier change in southwestern China during the past several decades. Environmental Research Letters, 6: 045404.
    Liu BH, Xu M, Henderson M, et al. 2004. A spatial analysis of pan evaporation trends in China, 1955-2000. Journal of Geophysical Research Atmospheres, 109: D15102. doi:  10.1029/2004JD004511
    Liu CM, Zeng Y. 2004. Changes of pan evaporation in the recent 40 years in the Yellow River basin. Water International, 29 (4): 510−516.
    Liu CM, Zhang D, Liu XM, et al. 2012. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960-2007). Journal of Geographical Sciences, 22(1): 3−14.
    Liu HJ, Li Y, Josef T, et al. 2014. Quantitative estimation of climate change effects on potential evapotranspiration in Beijing during 1951-2010. Journal of Geographical Sciences, 24(1): 93−112.
    Liu MX, Xu XL, Sun AY, et al. 2017. Decreasing spatial variability of drought in southwest China during 1959-2013. International Journal of Climatology. 37(13).
    Liu Q, Yang ZF, Cui BS, et al. 2010. The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrological Processes, 24: 2171−2181.
    Liu TG, Li LG, Lai JB, et al. 2016. Reference evapotranspiration change and its sensitivity to climate variables in southwest China. Theor Appl Climatol, 125: 499−508.
    Liu XM, Zhang D, Luo YZ, et al. 2013. Spatial and temporal changes in aridity index in northwest China: 1960 to 2010. Theoretical Applied Climatolpgy, 112: 307−316.
    Luo KS, Tao FL, Deng XZ, et al. 2017. Changes in potential evapotranspiration and surface runoff in 1981-2010 and the driving factors in Upper Heihe River Basin in Northwest China. Hydrological processes, 31: 90−103.
    Mann HB. 1945. Non-parametric tests against trend. Econometrica, 13: 245−259.
    McVicar TR, Roderick ML, Donohue RJ, et al. 2012. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 416-147: 182−205.
    Mitchell JM, Dzerdzeevskii B, Flohn H, et al. 1966. Climatic Change. WMO Technical Note No. 79. World Meteorological Organization: 79.
    Mo XG, Chen XJ, Hu S, et al. 2017. Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: A case study in the North China Plain. Hydrology and Earth System Sciences, 21: 295−310.
    Nouri M, Bannayan M. 2018. Spatiotemporal changes in aridity index and reference evapotranspiration over semi-arid and humid regions of Iran: Trend, cause, and sensitivity analyses. Theoretical and Applied Climatology, 136: 1073−1084.
    Onyutha C. 2016. Statistical analyses of potential evapotranspiration changes over the period 1930-2012 in the Nile River riparian countries. Agricultural and Forest Meteorology, 226-227: 80−95.
    Peterson TC, Golubev VS, Groisman PY. 1995. Evaporation losing its strength. Nature, 377: 687−688.
    Qian WH, Shan XL, Zhu YF. 2011. Ranking regional drought events in China for 1960-2009. Advances in Atmospheric Sciences, 28: 310−321.
    Roderick ML, Farquhar GD. 2002. The cause of decreased pan evaporation over the past 50 years. Science, 298: 1410−1411.
    Roderick ML, Farquhar GD. 2004. Changes in Australian pan evaporation from 1970 to 2002. International Journal of Climatology, 24: 1077−1090.
    Roderick ML, Farquhar GD. 2005. Changes in New Zealand pan evaporation since the 1970s. International Journal of Climatology, 25: 2013−2039.
    Rotstayn LD, Roderick ML, Farquhar GD. 2006. A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia. Geophysical Research Letters, 33: L17715.
    She DX, Xia J, Zhang YY. 2017. Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. Science of the Total Environment, 607-608: 1151−1162.
    Su XL, Singh VP, Niu JP, et al. 2015. Spatiotemporal trends of aridity index in Shiyang River basin of northwest China. Stochastic Environmental Research Risk Assessment, 29: 1571−1582.
    Sun SL, Chen HS, Wang GJ, et al. 2016. Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China. Journal of Geophysical Research Atmospheres, 121(6): 9342−9355.
    Sun SL, Chen HS, Ju WM, et al. 2017. On the coupling between precipitation and potential evapotranspiration: Contributions to decadal drought anomalies in the Southwest China. Climate Dynamic, 48: 3779−3797.
    Tabari H, Aghajanloo M-B. 2013. Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. International Journal of Climatology, 33: 396−409.
    Tebakari T, Yoshitani J, Suvanpimol C. 2005. Time-space trend analysis in pan evaporation over Kingdom of Thailand. Journal of Hydrologic Engineering, 10(3): 205−215.
    Wang LZ, Cao LG, Deng XJ, et al. 2014. Changes in aridity index and reference evapotranspiration over the central and eastern Tibetan Plateau in China during 1960−2012. Quaternary International, 349: 280−286.
    Wang P, Yamanaka T, Qiu GY. 2012b. Causes of decreased reference evapotranspiration and pan evaporation in the Jinghe River catchment, northern China. Environmentalist, 32: 1−10.
    Wang WG, Shao QX, Peng SZ, et al. 2012a. Reference evapotranspiration change and the causes across the Yellow River Basin during 1957-2008 and their spatial and seasonal differences. Water resources research, 48: W05530.
    Wang Y, Jiang T, Bothe O, et al. 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theoretical and Applied Climatology, 90: 13−23.
    Wang ZL, Xie PW, Lai CG, et al. 2017. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961−2013. Journal of Hydrology, 544: 97−108.
    Wen SS, Jiang T, Li XC, et al. 2014. Changes of actual evapotranspiration over the Songhua River Basin from 1961 to 2010. Progressus Inquisitiones de Mutatione Climatis, 10(2): 79−86.
    Wen M, Cheng DD, Song JX, et al. 2018. Impacts of climate change on aridity index and its spatiotemporal variation in the Loess Plateau of China, from 1961 to 2014. Environmental Earth Sciences, 77: 137. doi:  10.1007/s1265-018-7304-y
    Xu CY, Gong LB, Jiang T, et al. 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327: 81−93.
    Xu Y, Xu YP, Wang YF, et al. 2017. Spatial and temporal trends of reference crop evapotranspiration and its influential variables in Yangtze River Delta, eastern China. Theoretical Appllied Climatology, 130: 945−958.
    Yang XM, Li ZX, Feng Q, et al. 2012. The decreasing wind speed in southwestern China during 1969-2009, and possible causes. Quaternary International, 263: 71−84.
    Yin YH, Wu SH, Chen G, et al. 2010. Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theoretical Appllied Climatology, 101: 19−28.
    Yonge CJ, Ford DC, Gray J, et al. 1985. Stable isotope studies of cave seepage water. Chemical Geology, 58: 97−105.
    You GY, Zhang YP, Liu YH, et al. 2013. On the attribution of changing pan evaporation in a nature reserve in SW China. Hydrological Processes, 27: 2676−2682.
    Yuan DX. 1991. Karst of China. Beijing: Geological Publishing House.
    Zhao YF, Zou XQ, Zhang JX, et al. 2014. Spatio-temporal variation of reference evapotranspiration and aridity index in the Loess Plateau Region of China, during 1961−2012. Quaternary International, 349: 196−206.
    Zhao YF, Zou XQ, Cao LG, et al. 2018. Spatiotemporal variations of potential evapotranspiration and aridity index in relation to influencing factors over Southwest China during 1960−2013. Theoretical Appllied Climatology, 133: 711−726.
    Zhang CG, Liu FG, Shen YJ. 2018b. Attribution analysis of changing pan evaporation in the Qinghai-Tibetan Plateau, China. International Journal of Climatology.
    Zhang D, Zhang Q, Qiu JM, et al. 2018a. Intensification of hydrological drought due to human activity in the middle reaches of the Yangtze River, China. Science of the Total Environment, 637-638: 1432−1442.
    Zhang KX, Pan SM, Zhang W, et al. 2015. Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quaternary International, 380-381: 75−82.
    Zhang LX, Zhou TJ. 2015. Drought over East Asia: A review. Journal of Climate, 28: 3375−3399.
    Zhang Q, Xu CY, Chen XH. 2011. Reference evapotranspiration changes in China: Natural processes or human influences? Theor Appl Climatol, 103: 479-488.
    Zhang ZY, Wang WK, Wang ZF, et al. 2018. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China. Hydrogeology Journal. 26: 1683-1691.
    Zheng CL, Wang Q. 2015. Spatiotemporal pattern of the global sensitivity of the reference evapotranspiration to climatic variables in recent five decades over China. Stoch Environ Res Risk Assess, 29: 1937−1947.
    Zuo DP, Xu ZX, Yang H, et al. 2012. Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River basin, China. Hydrological Processes, 26: 1149−1160.
  • Relative Articles

    [1] Rustadi, I Gede Boy Darmawan, Nandi Haerudin, Agus Setiawan, Suharno, 2022: Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia, Journal of Groundwater Science and Engineering, 10, 10-18.  doi: 10.19637/j.cnki.2305-7068.2022.01.002
    [2] Han Zhang, Zong-yu Chen, Chang-yuan Tang, 2021: Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232.  doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [3] A S El-Hames, 2020: Development of a simple method for determining the influence radius of a pumping well in steady-state condition, Journal of Groundwater Science and Engineering, 8, 97-107.  doi: 10.19637/j.cnki.2305-7068.2020.02.001
    [4] Mohammad Tofayal Ahmed, Minhaj Uddin Monir, Md Yeasir Hasan, Md Mominur Rahman, Md Shamiul Islam Rifat, Md Naim Islam, Abu Shamim Khan, Md Mizanur Rahman, Md Shajidul Islam, 2020: Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273.  doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [5] XIA Fan, SONG Hong-wei, WANG Meng, WANG Hong-liang, CHEN Yu, 2019: Analysis of prospecting polymetallic metallogenic belts by comprehensive geophysical method, Journal of Groundwater Science and Engineering, 7, 237-244.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.004
    [6] SONG Hong-wei, MU Hai-dong, XIA Fan, 2018: Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method, Journal of Groundwater Science and Engineering, 6, 187-192.  doi: 10.19637/j.cnki.2305-7068.2018.03.004
    [7] LI Guo-ao, YAN Lei, CHEN Zhen-he, LI Ye, 2017: Determination of organic carbon in soils and sediments in an automatic method, Journal of Groundwater Science and Engineering, 5, 124-129.
    [8] MENG Rui-fang, YANG Hui-feng, LIU Chun-lei, 2016: Evaluation of water resources carrying capacity of Gonghe basin based on fuzzy comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 213-219.
    [9] HAO Qi-chen, SHAO Jing-li, CUI Ya-li, ZHANG Qiu-lan, 2016: Development of a new method for efficiently calculating of evaporation from the phreatic aquifer in variably saturated flow modeling, Journal of Groundwater Science and Engineering, 4, 26-34.
    [10] LI Xiao-yuan, YUE Gao-fan, SU Ran, YU Juan, 2016: Research on Pisha-sandstone’s anti-erodibility based on grey multi-level comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 103-109.
    [11] JI Rui-li, ZHANG Ming, SU Rui, GUO Yong-hai, ZHOU Zhi-chao, LI Jie-biao, 2016: Research of in-situ hydraulic test method by using double packer equipment, Journal of Groundwater Science and Engineering, 4, 41-51.
    [12] YU Kai-ning, LIAO An-ran, 2016: Primary study on evaluation index system for groundwater exploitation potentiality based on the niche theories, Journal of Groundwater Science and Engineering, 4, 18-25.
    [13] SUN Dong-sheng, ZHAO Wei-hua, LI A-wei, ZHANG An-bin, 2015: Analysis on method for effective in-situ stress measurement in hot dry rock reservoir, Journal of Groundwater Science and Engineering, 3, 9-15.
    [14] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng, 2015: Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [15] ZHANG Wei, 2014: Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25.
    [16] Do Van Binh, 2014: Using Environmental Isotope Method to Study the Air Temperature Variations of the Earth, Journal of Groundwater Science and Engineering, 2, 97-102.
    [17] ZHANG Shao-cai, LIU Li-jun, LIU Zhi-gang, WANG Jun-jie, CUI Qiu-ping, WANG Juan, 2014: Method for groundwater research in bedrock of mountainous area of Hebei, Journal of Groundwater Science and Engineering, 2, 97-104.
    [18] LIU Chang-Rong, HUANG Shuang-Bing, ZHANG Li-Zhong, 2014: New Mine Geological Environment Impact Assessment Method, Journal of Groundwater Science and Engineering, 2, 88-96.
    [19] Lihe Yin, Hongyun Ma, Jiaqiu Dong, Xiaoyong Wang, Ying Li, 2013: Using a Particle Tracking Method to Quantify Groundwater Circulation rates: a Case Study in the Ordos Plateau, Journal of Groundwater Science and Engineering, 1, 97-101.
    [20] Wang Qian, Zhang Lizhong, Cai Zizhao, Huo Zhibin, Zhang Huaidong, 2013: Evaluation Index System of Hydrogeological Investigation Software, Journal of Groundwater Science and Engineering, 1, 96-103.
  • 加载中

Catalog

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (545) PDF downloads(32) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return