• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 3
Sep.  2022
Turn off MathJax
Article Contents
Chen SM, Liu HW, Liu FT, et al. 2022. Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China. Journal of Groundwater Science and Engineering, 10(3): 292-301 doi:  10.19637/j.cnki.2305-7068.2022.03.007
Citation: Chen SM, Liu HW, Liu FT, et al. 2022. Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China. Journal of Groundwater Science and Engineering, 10(3): 292-301 doi:  10.19637/j.cnki.2305-7068.2022.03.007

Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China

doi: 10.19637/j.cnki.2305-7068.2022.03.007
More Information
  • Corresponding author: zihun@126.com
  • Received Date: 2022-04-15
  • Accepted Date: 2022-08-26
  • Publish Date: 2022-09-15
  • Sea water intrusion is an environmental problem cause by the irrational exploitation of coastal groundwater resources and has attracted the attention of many coastal countries. In this study, we used time series monitoring data of groundwater levels and tidal waves to analyze the influence of tide flow on groundwater dynamics in the southern Laizhou Bay. The auto-correlation and cross-correlation coefficients between groundwater level and tidal wave level were calculated specifically to measure the boundary conditions along the coastline. In addition, spectrum analysis was employed to assess the periodicity and hysteresis of various tide and groundwater level fluctuations. The results of time series analysis show that groundwater level fluctuation is noticeably influenced by tides, but the influence is limited to a certain distance and cannot reach the saltwater-freshwater interface in the southern Laizhou Bay. There are three main periodic components of groundwater level in tidal effect range (i.e. 23.804 h, 12.500 h and 12.046 h), the pattern of which is the same as the tides. The affected groundwater level fluctuations lag behind the tides. The dynamic analysis of groundwater indicates that the coastal aquifer has a hydraulic connection with seawater but not in a direct way. Owing to the existence of the groundwater mound between the salty groundwater (brine) and fresh groundwater, the maximum influencing distance of the tide on the groundwater is 8.85 km. Considering that the fresh-saline groundwater interface is about 30 km away from the coastline, modern seawater has a limited contribution to sea-salt water intrusion in Laizhou Bay. The results of this study are expected to provide a reference for the study on sea water intrusion.
  • 加载中
  • Balacco G, Alfio MR, Parisi A, et al. 2022. Application of short time series analysis for the hydrodynamic characterization of a coastal karst aquifer: The Salento aquifer (Southern Italy). Journal of Hydroinformatics, 24(2): 420−443. doi:  10.2166/hydro.2022.135
    Buscombe D, Grams PE, Kaplinski MA. 2014. Characterizing riverbed sediment using high-frequency acoustics: 1. Spectral properties of scattering. Journal of Geophysical Research: Earth Surface, 119(12): 2674−2691. doi:  10.1002/2014JF003189
    Cao WG, Gao ZP, Guo, HM, et al. 2022. Increases in groundwater arsenic concentrations and risk under decadal groundwater withdrawal in the lower reaches of the Yellow River basin, Henan Province, China. Environmental Pollution, 296(2022): 118741. doi:  10.1016/j.envpol.2021.118741
    Duvert C, Jourde H, Raiber M, et al. 2015. Correlation and spectral analyses to assess the response of a shallow aquifer to low and high frequency rainfall fluctuations. Journal of Hydrology, 527: 894−907. doi:  10.1016/j.jhydrol.2015.05.054
    Fadili A, Malaurent P, Najib S, et al. 2016. Investigation of groundwater behavior in response to oceanic tide and hydrodynamic assessment of coastal aquifers. Environmental Monitoring and Assessment, 188(5): 1−16. doi:  10.1007/s10661-016-5287-2
    Foster G, Brown PT. 2015. Time and tide: Analysis of sea level time series. Climate Dynamics, 45(1): 291−308. doi:  10.1007/s00382-014-2224-3
    Fu CS, Chen JY, Zeng SQ, et al. 2008. Statistical analysis on impact of tide on water table fluctuation in coastal aquifer. Journal of Hydraulic Engineering, 39(12): 1365−1376. doi:  10.3321/j.issn:0559-9350.2008.12.014
    Gao MS, Hou GH, Dang XZ, et al. 2020. Sediment distribution characteristics and environment evolution within 100 years in western Laizhou Bay, Bohai Sea, China. China Geology, 3: 445−454.
    Grose SD, Martin GM, Poskitt DS. 2015. Bias correction of persistence measures in fractionally integrated models. Journal of Time Series Analysis, 36(5): 721−740. doi:  10.1111/jtsa.12116
    Heudorfer B, Haaf E, Stahl K, et al. 2019. Index‐based characterization and quantification of groundwater dynamics. Water Resources Research, 55(7): 5575−5592. doi:  10.1029/2018WR024418
    Hu YZ, Li H, Li Y, et al. 2015. Hydrogeochemical recognization of seawater intrusion process at the typical profile in Laizhou Bay. Geological Survey and Research, 38(01): 41−50. (in Chinese)
    Jurasinski G, Janssen M, Voss M, et al. 2018. Understanding the coastal ecocline: Assessing sea–land Interactions at non-tidal, low-lying coasts through interdisciplinary research. Frontiers in Marine Science, 5: 342. doi:  10.3389/fmars.2018.00342
    Keshavarzi M, Baker A, Kelly BF, et al. 2017. River–groundwater connectivity in a karst system, Wellington, New South Wales, Australia. Hydrogeology Journal, 25(2): 557−574. doi:  10.1007/s10040-016-1491-y
    Kim JH, Lee J, Cheong TJ, et al. 2005. Use of time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea. Journal of Hydrology, 300(1-4): 188−198. doi:  10.1016/j.jhydrol.2004.06.004
    Kleiner B. 1977. Time series analysis: Forecasting and control. Technometrics, 68: 343−344. doi:  10.1080/00401706.1977.10489562
    Kopsiaftis G, Christelis V, Mantoglou A. 2019. Comparison of sharp interface to variable density models in pumping optimisation of coastal aquifers. Water Resources Management, 33(4): 1397−1409. doi:  10.1007/s11269-019-2194-7
    Larocque M, Mangin A, Razack M, et al. 1998. Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). Journal of Hydrology, 205(3-4): 217−231. doi:  10.1016/S0022-1694(97)00155-8
    Lo Russo S, Amanzio G, Ghione R, et al. 2015. Recession hydrographs and time series analysis of springs monitoring data: Application on porous and shallow aquifers in mountain areas (Aosta Valley). Environmental Earth Sciences, 73(11): 7415−7434. doi:  10.1007/s12665-014-3916-z
    Manivannan V, Elango L. 2019. Sea-salt water intrusion and submarine groundwater discharge along the Indian coast. Environmental Science and Pollution Research, 26(31): 31592−31608. doi:  10.1007/s11356-019-06103-z
    Pastore N, Cherubini C, Doglioni A, et al. 2020. Modelling of the complex groundwater level dynamics during episodic rainfall events of a Surficial aquifer in southern Italy. Water, 12(10): 2916. doi:  10.3390/w12102916
    Purwoarminta A, Moosdorf N, Delinom RM. 2018. Investigation of groundwater-seawater interactions: A review. Paper presented at the IOP Conference Series: Earth and Environmental Science, 118: 012017. doi:  10.1088/1755-1315/118/1/012017
    Rajaveni SP, Nair IS, Brindha K, et al. 2021. Finite element modelling to assess the submarine groundwater discharge in an over exploited multilayered coastal aquifer. Environmental Science and Pollution Research, 28(47): 67456−67471. doi:  10.1007/s11356-021-15219-0
    Rama F, Miotlinski K, Franco D, et al. 2018. Recharge estimation from discrete water-table datasets in a coastal shallow aquifer in a humid subtropical climate. Hydrogeology Journal, 26(6): 1887−1902. doi:  10.1007/s10040-018-1742-1
    Sánchez D, Barberá J, Mudarra M, et al. 2015. Hydrogeochemical tools applied to the study of carbonate aquifers: Examples from some karst systems of Southern Spain. Environmental Earth Sciences, 74(1): 199−215. doi:  10.1007/s12665-015-4307-9
    Sawyer AH, Michael HA, Schroth AW. 2016. From soil to sea: The role of groundwater in coastal critical zone processes. Wiley Interdisciplinary Reviews: Water, 3(5): 706−726. doi:  10.1002/wat2.1157
    Schuler P, Duran L, McCormack T, et al. 2018. Submarine and intertidal groundwater discharge through a complex multi-level karst conduit aquifer. Hydrogeology Journal, 26(8): 2629−2647. doi:  10.1007/s10040-018-1821-3
    Seibert SL, Degenhardt J, Ahrens J, et al. 2020. Investigating the land–sea transition zone. YOUMARES 9-The Oceans: Our Research, Our Future: 225‒242.
    Shi L, Jiao JJ. 2014. Sea-salt water intrusion and coastal aquifer management in China: A review. Environmental Earth Sciences, 72(8): 2811−2819. doi:  10.1007/s12665-014-3186-9
    Shi L, Zhang B, Wang L, et al. 2018. Functional efficiency assessment of the water curtain system in an underground water-sealed oil storage cavern based on time-series monitoring data. Engineering Geology, 239: 79−95. doi:  10.1016/j.enggeo.2018.03.015
    Shirahata K, Yoshimoto S, Tsuchihara T, et al. 2022. Time series lengths for the accurate isolation of major tidal components by simple Fourier analysis. Japan Agricultural Research Quarterly: JARQ, 56(1): 77−94. doi:  10.6090/jarq.56.77
    Sivelle V, Jourde H. 2021. A methodology for the assessment of groundwater resource variability in karst catchments with sparse temporal measurements. Hydrogeology Journal, 29(1): 137−157. doi:  10.1007/s10040-020-02239-2
    Su YJ, Huang ZF, Fan CS et al. 2018. Application of the three-dimensional high density resistivity method to detection the interface of saltwater intrusion: A case study of Laizhou bay. Geological Survey and Research, 41(02): 134−152. (in Chinese)
    Tran TN, Afanador NL, Buydens LM, et al. 2014. Interpretation of variable importance in partial least squares with significance multivariate correlation (sMC). Chemometrics and Intelligent Laboratory Systems, 138: 153−160. doi:  10.1016/j.chemolab.2014.08.005
    Zeng X, Dong J, Wang D, et al. 2017. Identifying key factors of the sea-salt water intrusion model of Dagu river basin, Jiaozhou Bay. Environmental Research, 165: 425−430. doi:  10.1016/j.envres.2017.10.039
    Zhang XY, Dong F, Dai H, et al. 2020. Influence of lunar semidiurnal tides on groundwater dynamics in estuarine aquifers. Hydrogeology Journal, 28(4): 1419−1429. doi:  10.1007/s10040-020-02136-8
    Zhang Y, Li L, Erler DV, et al. 2017. Effects of beach slope breaks on nearshore groundwater dynamics. Hydrological Processes, 31(14): 2530−2540. doi:  10.1002/hyp.11196
    Zhou X, Ruan CX, Fang B, et al. 2006. Period and lag of the time series of tide and groundwater levels affected by the tide in coastal aquifers. Hydrogeology and Engineering Geology(5): 71−74,79. (in Chinese)
  • Relative Articles

    [1] Gautam Vinay Kumar, Kothari Mahesh, Singh P.K., Bhakar S.R., Yadav K.K., 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [2] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [3] ZHONG Hua-ping, WU Yong-xiang, 2020: State of seawater intrusion and its adaptive management countermeasures in Longkou City of China, Journal of Groundwater Science and Engineering, 8, 30-42.  doi: 10.19637/j.cnki.2305-7068.2020.01.004
    [4] Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29.  doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [5] Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul, 2020: Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273.  doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [6] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe, 2020: Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243.  doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [7] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [8] ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min, 2019: Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones, Journal of Groundwater Science and Engineering, 7, 173-181.
    [9] LI Yang, KANG Feng-Xin, ZOU An-de, 2019: Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154.
    [10] LIU Yu, CHENG Yan-pei, GE Li-qiang, 2018: Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia, Journal of Groundwater Science and Engineering, 6, 49-57.  doi: 10.19637/j.cnki.2305-7068.2018.01.006
    [11] Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [12] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [13] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [14] JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao, 2017: Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248.
    [15] WU Jian-qiang, WU Xia-yi, 2016: Geological environment impact analysis of a landfill by the Yangtze River, Journal of Groundwater Science and Engineering, 4, 96-102.
    [16] WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [17] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [18] ZHOU Yang-xiao, Parvez Sarwer Hossain, Nico van der Moot, 2015: Analysis of travel time, sources of water and well protection zones with groundwater models, Journal of Groundwater Science and Engineering, 3, 363-374.
    [19] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
    [20] Meng-jie Wu, Hui-zhen Hen, 2013: Brief Talk of Groundwater Resources in Role of Rural Drinking Water Safety and Construction of City Emergency Water Source, Journal of Groundwater Science and Engineering, 1, 40-52.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (275) PDF downloads(16) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint