• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Ertekin C, Ulugergerli EU. 2022. Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye. Journal of Groundwater Science and Engineering, 10(4): 335-352 doi:  10.19637/j.cnki.2305-7068.2022.04.003
Citation: Ertekin C, Ulugergerli EU. 2022. Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye. Journal of Groundwater Science and Engineering, 10(4): 335-352 doi:  10.19637/j.cnki.2305-7068.2022.04.003

Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye

doi: 10.19637/j.cnki.2305-7068.2022.04.003
More Information
  • Corresponding author: emin@comu.edu.tr
  • ①TİGEM 2012. Anadolu Tarım İşletmesi Hidrojeolojik ve Jeofizik Etüt Raporu (in Turkish), 73.
  • ②URL1 2019. https://github.com/fatiando (AD 19.11.2019)
  • ③URL2 2019. https://github.com/gimli-org/gimli (AD 19.11.2019)
  • Received Date: 2022-04-06
  • Accepted Date: 2022-09-30
  • Available Online: 2022-12-27
  • Publish Date: 2022-12-31
  • In this study, a groundwater exploration survey was conducted using the DC Resistivity (DCR) method in a hydrogeological setting containing a perched aquifer. DCR data were gathered and an electrical tomography section was recovered using conventional four-electrode instruments with a Schlumberger array and a two-dimensional (2D) inversion scheme. The proposed scheme was tested over a synthetic three-dimensional (3D) subsurface model before deploying it in a field situation. The proposed method indicated that gathering data with simple four-electrode instruments at stations along a line and 2D inversion of datasets at multiple stations can recover depth intervals of the studied aquifer in the hydrogeological setting even if it has a 3D structure. In this study, 2D inversion of parallel profiles formed a pseudo-3D volume of the subsurface resistivity structures and mapped out multiple resistive (>25 ohm·m) bodies at shallow (between 50–100 m) and deep sections (>150 m). In general, the proposed method is convenient to encounter geological units that have limited vertical and spatial extensions in any direction and presents resistivity contrast from groundwater-bearing geologic materials.
  • ①TİGEM 2012. Anadolu Tarım İşletmesi Hidrojeolojik ve Jeofizik Etüt Raporu (in Turkish), 73.
    ②URL1 2019. https://github.com/fatiando (AD 19.11.2019)
    ③URL2 2019. https://github.com/gimli-org/gimli (AD 19.11.2019)
  • 加载中
  • Akbaş B, Akdeniz N, Aksay A, et al. 2011. 1:1 250 000 scale geological map of Turkey. General Directorate of Mineral Research and Exploration Publication: Ankara−Turkey.
    Araffa SA, Mohamadin MI, Saleh Sabet H, et al. 2019. Geophysical interpretation for groundwater exploration around Hurghada area, Egypt. Journal of Astronomy and Geophysics, 8(1): 171−179. doi:  10.1080/20909977.2019.1647389
    Awotoye KS, Selemo AO. 2006. Design and construction of a resistivity meter for shallow investigation. Nigerian Journal of Physics, 18(2): 261−270. doi:  10.4314/njphy.v18i2.38113
    Bhattacharya BB, Shalivahan S. 2016. Geoelectric methods: Theory and application. McGraw-Hill Education. ISBN: 9789339221379
    Boubaya D. 2017. Combining resistivity and aeromagnetic geophysical surveys for groundwater exploration in the Maghnia plain of Algeria. Journal of Geological Research: 1309053.
    Briggs IC. 1974. Machine contouring using minimum curvature. Geophysics, 39(1): 39−48. doi:  10.1190/1.1440410
    Clark JA, Page R. 2011. Inexpensive geophysical instruments supporting groundwater exploration in developing nations. Journal of Water Resource and Protection, 3(10): 768. doi:  10.4236/jwarp.2011.310087
    Constable SC, Parker RL, Constable CG. 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3): 289−300. doi:  10.1190/1.1442303
    EARTHDATA. 2021. SRTM Elevation Data of 1 arc-second. (A.D. 19.08.2021)
    Ekinci YL, Demirci A. 2008. A damped least-squares inversion program for the interpretation of Schlumberger sounding curves. Journal of Applied Sciences, 8(22): 4070−4078. doi:  10.3923/jas.2008.4070.4078
    Emre Ö, Duman TY, Özalp S, et al. 2013. Active fault map of Turkey with explanatory text. General Directorate of Mineral Research and Exploration Special Publication Series: 30.
    Emre Ö, Duman TY, Özalp S, et al. 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8): 3229−3275. doi:  10.1007/s10518-016-0041-2
    Esen E. 1978. Hydrogeological Investigation Report of Yukarı Sakarya Basin (in Turkish), General Directorate of State Hydraulic Works, 147, Ankara, Turkey
    Fitts CR. 2013. Groundwater Science (2nd edn). Elsevier.
    Florsch N, Muhlach F. 2017. Everyday applied geophysics 1: Electrical methods. Elsevier.
    Freeze RA, Cherry JA. 1979. Groundwater. Prentice-Hall Inc. Eaglewood Cliffs, New Jersey. ISBN: 0133653129
    Fretwell JD, Stewart MT. 1981. Resistivity study of a coastal karst terrain, Florida. Ground Water, 19: 156−162. doi:  10.1111/j.1745-6584.1981.tb03454.x
    Gallardo LA, Meju MA. 2007. Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophysical Journal International, 169(3): 1261−1272. doi:  10.1111/j.1365-246X.2007.03366.x
    GMVDE 2016. Geoscience Map Viewer and Drawing Editor Version 2.9, (AD 19.08.2021)
    Igboama WN, Ugwu NU. 2011. Fabrication of resistivity meter and its evaluation. American Journal of Scientific and Industrial Research, 2(5): 713−717. doi:  10.5251/ajsir.2011.2.5.713.717
    IHME. 2021. International Hydrogeological Map of Europe 1: 1 500 000 scale. (AD 19.08.2021).
    Jones AG. 1983. On the equivalence of the “Niblett” and “Bostick” transformations in the magnetotelluric method. Journal of Geophysics, 53(1): 72−73.
    Kanar F, Kandemir Ö. 2018. 1: 100 000 Scaled Turkey Geological Map Series Eskişehir-İ25 Sheet (in Turkish), General Directorate of Mineral Research and Exploration Publication, Ankara, Turkey.
    Lee CH. 1915. The determination of safe yield of underground reservoirs of the closed-basin type. Transactions of the American Society of Civil Engineers, 98: 148−218.
    Loke MH, Barker RD. 1996a. Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-Newton method. Geophysical Prospecting, 44(1): 131−152. doi:  10.1111/j.1365-2478.1996.tb00142.x
    Loke MH, Barker RD. 1996b. Practical techniques for 3D resistivity surveys and data inversion. Geophysical prospecting, 44(3): 499−523. doi:  10.1111/j.1365-2478.1996.tb00162.x
    Maliva RG. 2016. Aquifer characterization techniques. Berlin: Springer. ISBN: 978-3-319-32137-0
    Meju MA. 1994. Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice: SEG Course Notes Series, 6: Tulsa: SEG.
    Meju MA. 2002. Geoelectromagnetic exploration for natural resources: Models, case studies and challenges. Surveys in Geophysics, 23(2−3): 133−206. doi:  10.1023/A:1015052419222
    Menke W. 1989. Geophysical data analysis: Discrete inverse theory. Academic press.
    Mikailu A, Abdullahi I, Sani MG, et al. 2015. Development of Digital Resistivity Meter. Advances in Physics Theories and Applications, 42. ISSN 2224-719X
    MTA. 1964. The general directorate of mineral research and exploration. Geological map of Turkey (1:500 000 scale). Ankara: Turkey.
    Nwankwo LI. 2011. 2D resistivity survey for groundwater exploration in a hard rock terrain: A case study of MAGDAS observatory, UNILORIN, Nigeria. Journal of Asian Earth Sciences, 4(1): 46−53. doi:  10.3923/ajes.2011.46.53
    Okay AI, Tüysüz O. 1999. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications. 156(1): 475-515.
    Okay AI. 2011. Tavşanli Zone: The northern subducted margin of the Anatolide-Tauride block. Bulletin of the Mineral Research and Exploration, 142: 191−211.
    Oldenburg DW, Li Y. 1999. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64(2): 403−416. doi:  10.1190/1.1444545
    Olorunfemi MO, Fasuyi SA. 1993. Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State). Journal of African Earth Sciences (and the Middle East), 16(3): 309−317. doi:  10.1016/0899-5362(93)90051-Q
    Özürlan G, Candansayar ME, Şahin HM. 2006. Deep resistivity structure of Dikili-Bergama region, West Anatolia, revealed by two dimensional inversion of vertical electrical sounding data. Geophysical Prospecting, 54: 187−197. doi:  10.1111/j.1365-2478.2006.00525.x
    Palacky GJ. 1987. Clay mapping using electromagnetic methods. First Break, 5(8): 295−306. doi:  10.3997/1365-2397.1987015
    Rijo L, Pelton WH, Feitosa EC, et al. 1977. Interpretation of apparent resistivity data from Apodi Valley, Rio Grande DoNorte, Brazil. Geophysics, 42: 811−822. doi:  10.1190/1.1440749
    Roy A, Apparao A. 1971. Depth of investigation in direct current methods. Geophysics, 36(5): 943−959. doi:  10.1190/1.1440226
    Saad R, Nawawi MNM, Mohamad ET. 2012. Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT). Electronic Journal of Geotechnical Engineering, 17: 369−376.
    Sasaki Y, Meju MA. 2006. A multidimensional horizontal-loop controlled-source electromagnetic inversion method and its use to characterize heterogeneity in aquiferous fractured crystalline rocks. Geophysical Journal International, 166(1): 59−66. doi:  10.1111/j.1365-246X.2006.02957.x
    Shaaban FF. 2001. Vertical electrical soundings for groundwater investigation in northwestern Egypt: A case study in a coastal area. Journal of African Earth Sciences, 33(3−4): 673−686. doi:  10.1016/S0899-5362(01)00092-6
    Surfer. 2020. Contouring, gridding, and 3D surface mapping software (Software Version 18), Golden Software, Colorado, USA
    Swartz JH. 1937. Resistivity studies of some salt-water boundaries in the Hawaiian Islands. Eos, Transactions American Geophysical Union, 18(2): 387-393. doi:  10.1029/TR018i002p00387
    Swartz JH. 1939. Resistivity studies of some salt-water boundaries in the Hawaiian Islands Part II. Eos, Transactions American Geophysical Union, 20: 292. doi:  10.1029/TR020i003p00292
    Szalai S, Novák A, Szarka, L. 2009. Depth of investigation and vertical resolution of surface geoelectric arrays. Journal of Environmental and Engineering Geophysics, 14(1): 15−23. doi:  10.2113/JEEG14.1.15
    Telford WM, Geldart LP, Sheriff RE (editors). 1990. Applied Geophysics. Cambridge, UK: University Press.
    Ulugergerli EU. 2017. Marine effects on vertical electrical soundings along shorelines. Turkish Journal of Earth Sciences, 26(1): 57−72. doi:  10.3906/yer-1610-10
    Vedanti N, Srivastava RP, Sagode J, et al. 2005. An efficient 1D Occam’s inversion algorithm using analytically computed first-and second-order derivatives for DC resistivity soundings. Computers and Geosciences, 31(3): 319−328. doi:  10.1016/j.cageo.2004.10.015
    Werkema Jr DD, Atekwana E, Sauck W, et al. 1998. A versatile Windows based multi-electrode acquisition system for dc electrical methods surveys. Environmental Geosciences, 5(4): 196−206. doi:  10.1046/j.1526-0984.1998.08027.x
    Yang X, Lagmanson M. 2006. Comparison of 2D and 3D electrical resistivity imaging methods. In 19th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-181). European Association of Geoscientists and Engineers.
    Zhdanov MS, Keller GV. 1994. The geoelectrical methods in geophysical exploration (Vol. 31). Elsevier Science Limited. ISBN-10: 0444896783.
    Zürcher L, Bookstrom AA, Hammarstrom JM, et al. 2010. Porphyry copper assessment of the Tethys region of western and southern Asia: U. S. Geological Survey Scientific Investigations Report 2010–5090–V, 232, and spatial data.
  • Relative Articles

    [1] Ming-nan Yang, Liang Zhu, Jing-tao Liu, Yu-xi Zhang, Bing Zhou, 2023: Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China, Journal of Groundwater Science and Engineering, 11, 333-346.  doi: 10.26599/JGSE.2023.9280027
    [2] Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [3] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [5] Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas, 2020: Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network, Journal of Groundwater Science and Engineering, 8, 87-96.  doi: 10.19637/j.cnki.2305-7068.2020.01.009
    [6] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique, 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [7] Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [8] Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [9] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [10] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [11] ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [12] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan, 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [13] WU Jian-qiang, WU Xia-yi, 2016: Geological environment impact analysis of a landfill by the Yangtze River, Journal of Groundwater Science and Engineering, 4, 96-102.
    [14] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming, 2016: Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [15] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [16] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [17] GONG Jian-shi, ZHU Chun-fang, YE Nian-jun, WANG He-sheng, ZHOU Kai-e, HOU Li-li, 2014: Experimental study of impact of a certain polluted river on groundwater along river bank in Southeast China, Journal of Groundwater Science and Engineering, 2, 8-16.
    [18] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
    [19] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
    [20] Jingli Shao, Yali Cui, Yunzhang Zhao, 2013: A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
  • 加载中

Catalog

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (485) PDF downloads(70) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return