• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Dr Muthamilselvan A, Sekar A, Ignatius E. 2022. Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu. Journal of Groundwater Science and Engineering, 10(4): 367-380 doi:  10.19637/j.cnki.2305-7068.2022.04.005
Citation: Dr Muthamilselvan A, Sekar A, Ignatius E. 2022. Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu. Journal of Groundwater Science and Engineering, 10(4): 367-380 doi:  10.19637/j.cnki.2305-7068.2022.04.005

Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu

doi: 10.19637/j.cnki.2305-7068.2022.04.005
More Information
  • Corresponding author: muthamilselvan.a@bdu.ac.in
  • ①District Survey Report for Sand, 2019
  • Received Date: 2022-01-12
  • Accepted Date: 2022-09-23
  • Available Online: 2022-12-27
  • Publish Date: 2022-12-31
  • Water is an essential natural resource without which life wouldn’t exist. The study aims to identify groundwater potential areas in Vepapanthattai taluk of Perambalur district, Tamil Nadu, India, using analytic hierarchy process (AHP) model. Remote sensing and magnetic parameters have been used to determine the evaluation indicators for groundwater occurrence under the ArcGIS environment. Groundwater occurrence is linked to structural porosity and permeability over the predominantly hard rock terrain, making magnetic data more relevant for locating groundwater potential zones in the research area. NE-SW and NW-SE trending magnetic breaks derived from reduction to pole map are found to be more significant for groundwater exploration. The lineaments rose diagram indicates the general trend of the fracture to be in the NE-SW direction. Assigned normalised criteria weights acquired using the AHP model was used to reclassify the thematic layers. As a result, the taluk’s low, moderate, and high potential zones cover 25.08%, 25.68% and 49.24% of the study area, respectively. The high potential zones exhibit characteristics favourable for groundwater infiltration and storage, with factors as gentle slope of <3°, high lineament densities, magnetic breaks, magnetic low zones as indicative of dykes and cracks, lithology as colluvial deposits and land surface with dense vegetation. The depth of the fracture zones was estimated using power spectrum and Euler Deconvolution method. The groundwater potential mapping results were validated using groundwater level data measured from the wells, which indicated that the groundwater potential zoning results are consistent with the data derived from the real world.
  • ①District Survey Report for Sand, 2019
  • 加载中
  • Aina, Adebayo. 1986. Reduction to equator, reduction to pole and orthogonal reduction of magnetic profiles. Exploration Geophysics, 17(3): 141−145. doi:  10.1071/EG986141
    Kumar AV, Mondal NC, Ahmed S. 2020. Identification of groundwater potential zones using RS, GIS and AHP techniques: A case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. Journal of the Indian Society of Remote Sensing: 497−511. doi:  10.1007/s12524-019-01086-3
    Anbazhagan S, Jothibasu A. 2016. Geoinformatics in groundwater potential mapping and sustainable development: A case study from southern India. Hydrological Sciences Journal, 61(6): 1109−1123. doi:  10.1080/02626667.2014.990966
    Arshad A, Zulfiqar A. 2012. Integration of groundwater flow modeling and GIS. In Water Resources Management and Modeling edited by Dr. Purna Nayak. IntechOpen.
    Chandio IA, Matori ANB, Khamaruzaman B, et al. 2013. GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: A review. Arabian Journal of Geosciences: 3059−3066. doi:  10.1007/s12517-012-0568-8
    Das, Sujit. 2017. Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Modeling Earth Systems and Environment, 3(4): 1589−1599. doi:  10.1007/s40808-017-0396-7
    Dewashish K, Krishnamurthy NS. 2006. Utility of magnetic data in delineation of groundwater potential zones in hard rock terrain. Current Science, 91: 1456−1458.
    Khodaei K, Nassery HR. 2013. Groundwater exploration using remote sensing and geographic information systems in a semi-arid area (Southwest of Urmieh, Northwest of Iran). Arabian Journal of Geosciences: 1229−1240. doi:  10.1007/s12517-011-0414-4
    Krishnan R, Sanjay J, Gnanaseelan C, et al. 2020. Assessment of climate change over the Indian Region. 1. Springer: Singapore. doi:  10.1007/978-981-15-4327-2
    Liu QS, Liu GH, Huang C, et al. 2014. A tasseled cap transformation for Landsat 8 OLI TOA reflectance images. In IEEE Geoscience and Remote Sensing Symposium: 541−544.
    Ma WM, Zhang XC, Zhen Q, et al. 2016. Effect of soil texture on water infiltration in semiarid reclaimed land. Water Quality Research Journal, 51(1): 33−41. doi:  10.2166/wqrjc.2015.025
    Malczewski, Jacek. 1999. GIS and Multicriteria Decision Analysis. Wiley.
    Mallick J, Khan RA, Ahmed M, et al. 2019. Modeling groundwater potential zone in a semi-arid region of Aseer using Fuzzy-AHP and geoinformation techniques. Water, 11(12). doi:  10.3390/w11122656
    Mohammadi-Behzad HR, Charchi A, Kalantari N, et al. 2019. Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: A case study in the Leylia–Keynow watershed, southwest of Iran. Carbonates and Evaporites: 1307–1319.
    Muthamilselvan A, Rajasekaran N, Suresh R. 2019. Mapping of Hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur district of Tamil Nadu, India. Journal of Groundwater Science and Engineering: 264−281. doi:  10.19637/j.cnki.2305-7068.2019.03.007
    Muthamilselvan A, Srimadhi K, Nandhini. R, et al. 2017. Spatial confirmation of major lineament and groundwater exploration using Ground Magnetic Method near Mecheri Village, Salem District of Tamil Nadu, India. Journal of Geology & Geophysics.
    Nakamura A, Milligan PR. 2015. Total Magnetic Intensity (TMI) grid of Australia with variable reduction to pole (VRTP). Geoscience Australia.
    Nilawar, Waikar ML, Aditya P. 2014. Identification of groundwater potential zone using Remote Sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology.
    Pothiraj P, Baskaran R. 2013. Mapping of lineaments for groundwater targeting and sustainable water resource management in Hard Rock hydrogeological environment using RS-GIS. Climate Change and Regional/Local Responses.
    Prasad RK, Mondal NC, Banerjee P, et al. 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3): 467−475. doi:  10.1007/s00254-007-0992-3
    Saaty, Thomas L. 2014. Analytic Heirarchy Process. Wiley StatsRef: Statistics Reference Online.
    Saraf AK, Choudhury PR. 1998. Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing, 19(10): 1825−1841. doi:  10.1080/014311698215018
    Simlandy, Sagar. 2015. Importance of groundwater as compatible with environment. International Journal of Ecosystem, 5: 89−92. doi:  10.5923/c.ije.201501.13
    Singh P, Thakur JK, Kumar S. 2013. Delineating groundwater potential zones in a hard-rock terrain using geospatial tool. Hydrological Sciences Journal, 58(1): 213−223. doi:  10.1080/02626667.2012.745644
    Subash C, Esben A, Pradip KM, et al. 2019. Large scale mapping of fractures and groundwater pathways in crystalline hardrock by AEM. Scientific Reports: 398. doi:  10.1038/s41598-018-36153-1
    Sultan A. 2013. Delineation of groundwater aquifer and subsurface structures on North Cairo, Egypt, using integrated interpretation of magnetic, gravity, geoelectrical and geochemical data. Geophysical Journal International, 192(1): 94−112. doi:  10.1093/gji/ggs008
    Tanveer D, Nachiketa R, Aadil B. 2020. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geology, Ecology and Landscapes.
    Zmuda AJ, Zmuda. 1971. The International Geomagnetic Reference Field: Introduction. Bull Int Assoc Geomag Aeronomy, 28: 148–152.
  • Relative Articles

    [1] Masoud H Hamed, Rebwar N Dara, Marios C Kirlas, 2024: Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq, Journal of Groundwater Science and Engineering, 12, 16-33.  doi: 10.26599/JGSE.2024.9280003
    [2] Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili, 2023: Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262.  doi: 10.26599/JGSE.2023.9280021
    [3] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku, 2023: Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236.  doi: 10.26599/JGSE.2023.9280019
    [4] Rustadi, I Gede Boy Darmawan, Nandi Haerudin, Agus Setiawan, Suharno, 2022: Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia, Journal of Groundwater Science and Engineering, 10, 10-18.  doi: 10.19637/j.cnki.2305-7068.2022.01.002
    [5] Wondesen Fikade Niway, Dagnachew Daniel Molla, Tarun Kumar Lohani, 2022: Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152.  doi: 10.19637/j.cnki.2305-7068.2022.02.004
    [6] A Muthamilselvan, B Preethi, 2022: Spatial confirmation of termite mounds as Bio-geo indicator for groundwater occurrences using ground magnetic survey: A case study from Perambalur Region of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 10, 184-195.  doi: 10.19637/j.cnki.2305-7068.2022.02.007
    [7] Van Hoang Nguyen, 2021: Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data, Journal of Groundwater Science and Engineering, 9, 292-303.  doi: 10.19637/j.cnki.2305-7068.2021.04.003
    [8] Afraz Mehdi, Eftekhari Mobin, Akbari Mohammad, Ali Haji Elyasi, Noghani Zahra, 2021: Application assessment of GRACE and CHIRPS data in the Google Earth Engine to investigate their relation with groundwater resource changes (Northwestern region of Iran), Journal of Groundwater Science and Engineering, 9, 102-113.  doi: 10.19637/j.cnki.2305-7068.2021.02.002
    [9] Kessar Cherif, Benkesmia Yamina, Blissag Bilal, Wahib Kébir Lahsen, 2021: Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64.  doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [10] A Muthamilselvan, 2021: Identification of suitable sites for open and bore well using ground magnetic survey, Journal of Groundwater Science and Engineering, 9, 256-268.  doi: 10.19637/j.cnki.2305-7068.2021.03.008
    [11] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [12] Zhi-yuan LIU, Ding TAN, Zhi-bin CHEN, Yun-fei WEI, Quan CHAI, Xiao-hang CHEN, 2020: Study on multiple induced polarization parameters in groundwater exploration in Bashang poverty alleviation area of Heibei Province, China, Journal of Groundwater Science and Engineering, 8, 274-280.  doi: 10.19637/j.cnki.2305-7068.2020.03.007
    [13] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine, 2019: Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [14] A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [15] CAO Yan-ling, CHENG Gang-jian, ZHAO Cheng-liang, WANG Tao, JIANG Hai-yang, 2018: Application of CSAMT in hydrogeology exploration in Shandong Province–An example from geothermal exploration in Changdao County (south four islands), Journal of Groundwater Science and Engineering, 6, 58-64.  doi: 10.19637/j.cnki.2305-7068.2018.01.007
    [16] Dana Mawlood, Jwan Mustafa, 2016: Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer, Journal of Groundwater Science and Engineering, 4, 165-173.
    [17] LI Duo, WEI Ai-hua, 2016: Analysis of influence of the power plant ash storage yard on groundwater environment, Journal of Groundwater Science and Engineering, 4, 35-40.
    [18] BI Xue-li, XU Qi, ZHANG Fa-wang, 2015: Application of remote sensing technique to mapping of the map series of karst geology in China and Southeast Asia, Journal of Groundwater Science and Engineering, 3, 186-191.
    [19] GUO Qing-shi, ZHOU Zhi-yong, GUO Si-si, HAO Ji-kun, 2014: Application Research of Remote Sensing Technology in Regional Hydrogeological Survey, Journal of Groundwater Science and Engineering, 2, 62-67.
    [20] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang, 2013: Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
  • 加载中

Catalog

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (408) PDF downloads(58) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return