• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Tong XX, Gan R, Gu SQ, et al. 2022. Stable chlorine isotopic signatures and fractionation mechanism of groundwater in Anyang, China. Journal of Groundwater Science and Engineering, 10(4): 393-404 doi:  10.19637/j.cnki.2305-7068.2022.04.007
Citation: Tong XX, Gan R, Gu SQ, et al. 2022. Stable chlorine isotopic signatures and fractionation mechanism of groundwater in Anyang, China. Journal of Groundwater Science and Engineering, 10(4): 393-404 doi:  10.19637/j.cnki.2305-7068.2022.04.007

Stable chlorine isotopic signatures and fractionation mechanism of groundwater in Anyang, China

doi: 10.19637/j.cnki.2305-7068.2022.04.007
More Information
  • Corresponding author: ktz2022@163.com
  • Received Date: 2022-07-20
  • Accepted Date: 2022-11-04
  • Available Online: 2022-12-27
  • Publish Date: 2022-12-31
  • The present work provides an online Bench II-IRMS technique for the measurement of stable chlorine isotope ratio, which is used to measure the δ37Cl of 38 groundwater samples from the Karst and Quaternary aquifers in Anyang area. The regional distribution and signature of δ37Cl value are characterized on the base of isotopic data. The results suggest that the δ37Cl value of Quaternary groundwater decreases with increasing Cl concentration, and has no correlation with δ18O and δD values, but closely correlates with the depth to water table. The fractionation mechanism of the chlorine isotope is expounded according to the type of groundwater. The δ37Cl value of karst water is generally positive, which is relevant to the dissolution of evaporite (gypsum mine), and may be caused by the mixing of groundwater and precipitation. The groundwater of Quaternary unconfined aquifer is mainly recharged by precipitation, and the δ37Cl value of groundwater is generally negative. The δ37Cl value of groundwater in Quaternary confined aquifer is more negative with increasing the depth to water level and elevated Cl concentration, which is possible to result from the isotope fractionation of ion filtration. The groundwater with inorganic pollutants in Quaternary unconfined aquifer has generally a positive δ37Cl value.
  • 加载中
  • Campbell DJ. 1985. Fractionation of stable chlorine isotopes during transport through semipermeable membranes. The University of Arizona, USA: 48−68.
    Duce RA. 1998. The input of atmospheric chemicals to the ocean. WMO Bulletin, 47(1): 51−60.
    Eastoe CJ, Guilbert JM. 1992. Stable chlorine isotopes in hydrothermal processes. Geochimica et Cosmochimica Acta, 56(12): 4247−4255. doi:  10.1016/0016-7037(92)90265-K
    Eastoe CJ, Long A, Land LS, et al. 2001. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis and evolution. Chemical Geology, 176(1−4): 343−360. doi:  10.1016/S0009-2541(00)00374-0
    Edmunds W, Guendouz AH, Mamou A, et al. 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Applied Geochemistry, 18: 805−822.
    Erickson IIIDJ, Seuzaret C, Keene WC, et al. 1999. A general circulation modelbased calculation of HCl and ClNO2 production from sea salt dechlorination: Reactive Chlorine Emissions Inventory. Journal of Geophysical Research: Atmospheres, 104(D7): 8347−8372.
    Jendrzejewski N, Eggenkamp HGM, ColemanM L. 2001. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: Scope of application to environmental problems. Applied Geochemistry, 16: 1021-1031.
    Kaufmann RS, Frape SK, MaNutt R. 1993. Chlorine stable isotope distribution of Michigan Basin formation waters. Applied Geochemistry, 8: 403-407.
    Kaufmann RS, Long A, Bentley HW. 1984. Natural chlorine isotope variations. Nature, 309: 338−340. doi:  10.1038/309338a0
    Koehler G, Wassenaar LI. 2010. The stable isotopic composition (37Cl/35Cl) of dissolved chloride in rainwater. Applied geochemistry, 25(1): 91−96. doi:  10.1016/j.apgeochem.2009.10.004
    Lang YC, Liu CQ, Satake H, et al. 2008. δ37Cl and δ34S variations of Cl and SO42− in groundwater and surface water of Guiyang area, China. Advance in Earth Science, 23: 151−159. (in Chinese)
    Lavastre V, Jendrzejewski N, Agrinier P, et al. 2005. Chlorine transfer out of a very low permeability clay sequence (Paris Basin, France): 35Cl and 37Cl evidence. Geochimica et Cosmochimica Acta, 69(21): 4949−4961. doi:  10.1016/j.gca.2005.04.025
    Lightowlers PJ, Cape JN. 1988. Sources and fate of atmospheric HCl in the UK and Western Europe. Atmospheric Environment, 22(1): 7−15. doi:  10.1016/0004-6981(88)90294-6
    Liu CQ, Lang YC, Satake H, et al. 2008. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: Combined δ37Cl and δ34S approach. Environmental science & technology, 42(15): 5421−5427.
    Liu L. 2011. Chlorine isotopic composition and its indicative significance in groundwater in Hebei Plain. China Univesity of Geosciences (Wuhan). (in Chinese)
    Liu WG, Xiao YK, Wang QZ. 1996. Chlorine isotopic geochemistry lakes in the Qaidam Basin, China. Chemical Geology, 136: 271−279.
    Liu WG, Xiao YK, Sun DP. 1998. Characteristics and significance of chlorine isotope of brine and deposits in the Mahai Salt Lakes. Journal of Salt Lake Science, 3(2): 29−33.
    Liu YD, Zhou AG, Gan YQ, et al. 2013. An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a Gasbench II. Journal of Central South University, 20(1): 193−198. doi:  10.1007/s11771-013-1476-0
    Long A, Eastoe CJ, Kaufmann RS. 1993. High-precision measurement of chlorine stable isotope ratios. Geochimica et Cosmochimica Acta, 57: 2907−2912. doi:  10.1016/0016-7037(93)90398-G
    Nier AO, Hanson EE. l936. A mass-spectrographic analysis of the ions produced in HCl under eletron impact. Physical Review, 50: 722-726.
    Numata M, Nakamura N, Koshikawa H, et al. 2002. Chlorine stable isotope measurements of chlorinated aliphatic hydrocarbons by thermal ionization mass spectrometry. Analytica Chimica Acta, 455: 129.
    Phillips FM, Bentley HW. 1987. Isotopic fractionation during ion filtration: I. Theory. Geochimica et Cosmochimica Acta, 51(3): 683−695. doi:  10.1016/0016-7037(87)90079-2
    Shouakar-Stash O, Drimmie RJ, Frape SK. 2005. Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 19: 121−127. doi:  10.1002/rcm.1762
    Shouakar-Stash O, Frape SK, Drimmie RJ. 2003. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents. Contaminant Hydrology, 60: 211-228.
    Sie PMJ, Frape SK. 2002. Evaluation of the groundwaters from the Stripa mine using stable chlorine isotopes. Chemical Geology, 182: 565−582.
    Sun AD, Xiao YK, Wang QZ. 2004. The separation and stable isotopic measurement of chlorine in low-concentration liquid sample. Chinese Journal of Analytical Chemistry. 32(10): 1362-1364. (in Chinese)
    Taylor JW, Grimsrud ER. 1969. Chlorine isotope ratios by negative ion mass spectrometry. Analytical Chemistry, 41: 805−810. doi:  10.1021/ac60275a002
    Vengosh A, Chivas AR, McCulloch MT. 1989. Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chemical Geology: Isotope Geoscience Section, 79(4): 333−343. doi:  10.1016/0168-9622(89)90039-0
    Volpe C, Spivack AJ. 1994. Stable chlorine isotopic composition of marine aerosol particles in the western Atlantic Ocean. Geophysical Research Letters, 21(12): 1161−1164. doi:  10.1029/94GL01164
    Wagenbach D, Ducroz F, Mulvaney R, et al. 1998. Sea-salt aerosol in coastal Antarctic regions. Journal of Geophysical Research: Atmospheres, 103(D9): 10961−10974. doi:  10.1029/97JD01804
    Xiao Y, Wang X, Wei H, et al. 2007. A new method for the removal of SO42− for isotopic measurement of chlorine. Chemical geology, 238(1−2): 38−43. doi:  10.1016/j.chemgeo.2006.10.011
    Xiao Y, Liu W, Zhou Y, et al. 1997. Isotopic compositions of chlorine in brine and saline minerals. Chinese science bulletin, 42(5): 406−409. doi:  10.1007/BF02884233
    Xiao YC, Liu WG, Zhou YM, et al. 2000. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China. Chinese Journal of Oceanology and Limnology, 18(2): 169−177. doi:  10.1007/BF02842577
    Xiao YK, Jin L, Liu WG, et al. 1994. The isotopic compositions of chlorine in Da Qaidam Lake. Chinese Science Bulletin, 39: 1319−1322. doi:  10.1360/csb1994-39-14-1319
    Xiao YK, Zhang CG. 1992. High precision measurement of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. International Journal of Mass Spectrometry and Ion Processes, 116: 183−192. doi:  10.1016/0168-1176(92)80040-8
    Xiao YK, Zhou YM, Liu WG. 1995. Precise measurement of chlorine isotopes based on Cs2Cl+ by thermal ionization mass spectrometry. Analytical Letters, 28(7): 1295−1304. doi:  10.1080/00032719508000346
    Xiao YK, Liu WG, Zhou YM. 1997. Isotopic compositions of chlorine in brine and saline minerals. Chinese Science Bulletin, 42(5): 406−409.
    Xiao YK, Zhou YM, Liu WG. 2001. The character of isotopic compositions of chlorine in ocean water. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 406-407.
    Xu QC, Sun AD. 2001. Preliminary Study for Chlorine Isotopic Fractionation in the Dissolution of NaCl. Journal of Salt Lake Science, 19(1): 9−15.
    Zhang CG, Xiao YK. 1993. High precision isotopic measurement of chlorine by thermal ionization mass spectrometry. Journal of Salt Lake Science, 1(2): 1−5.
  • Relative Articles

    [1] Rui-fang Meng, Hui-feng Yang, Xi-lin Bao, Bu-yun Xu, Hua Bai, Jin-cheng Li, Ze-xin Liang, 2023: Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China, Journal of Groundwater Science and Engineering, 11, 133-145.  doi: 10.26599/JGSE.2023.9280012
    [2] Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [3] Zhao-xian Zheng, Ling-xia Liu, Xiao-shun Cui, 2021: Source identification of methane in groundwater in shale gas development areas: A critical review of the state of the art, prospects, and future challenges, Journal of Groundwater Science and Engineering, 9, 245-255.  doi: 10.19637/j.cnki.2305-7068.2021.03.007
    [4] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique, 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [5] LI Yang, KANG Feng-Xin, ZOU An-de, 2019: Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154.  doi: 10.19637/j.cnki.2305-7068.2019.02.005
    [6] LI Xiao-hang, WANG Rui, LI Jian-feng, 2018: Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [7] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [8] ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, YUAN Rui-qiang, TANG Chang-yuan, SONG Xian-fang, 2018: Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain, Journal of Groundwater Science and Engineering, 6, 220-233.  doi: 10.19637/j.cnki.2305-7068.2018.03.007
    [9] ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [10] JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao, 2017: Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248.
    [11] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [12] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming, 2016: Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [13] LIU Ji-chao, SHI Jian-sheng, GAO Ye-xin, REN Zhan-bing, 2016: Exploration on compound water circulation system to solve water resources problems of North China Plain, Journal of Groundwater Science and Engineering, 4, 229-237.
    [14] LIU Min, NIE Zhen-long, WANG Jin-zhe, WANG Li-fang, TIAN Yan-liang, 2016: An assessment of the carrying capacity of groundwater resources in North China Plain region–Analysis of potential for development, Journal of Groundwater Science and Engineering, 4, 174-187.
    [15] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [16] FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, GUO Chun-yan, TIAN Xia, 2015: Quality evaluation of groundwater in the North China Plain, Journal of Groundwater Science and Engineering, 3, 306-315.
    [17] WANG Chun-xiao, ZHANG Zhao-ji, FEI Yu-hong, QIAN Yong, 2014: Research on Migration Features of Salt-Fresh Water Interface on the North China Plain, Journal of Groundwater Science and Engineering, 2, 68-79.
    [18] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu, 2013: Urban Waste Disposal and Its Impact on Groundwater Pollution in China, Journal of Groundwater Science and Engineering, 1, 88-95.
    [19] Zhao Wang, Jiansheng Shi, Zhaoji Zhang, Yuhong Fei, 2013: Organic Contamination of Soil and Goundwater in the Piedimont Plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 1, 74-81.
    [20] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
  • 加载中


    Figures(8)  / Tables(2)

    Article Metrics

    Article views (313) PDF downloads(31) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint