• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 12 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Zhang J, Hou RZ, Yu K, et al. 2024. Impact of water table on hierarchically nested groundwater flow system. Journal of Groundwater Science and Engineering, 12(2): 119-131 doi:  10.26599/JGSE.2024.9280010
Citation: Zhang J, Hou RZ, Yu K, et al. 2024. Impact of water table on hierarchically nested groundwater flow system. Journal of Groundwater Science and Engineering, 12(2): 119-131 doi:  10.26599/JGSE.2024.9280010

Impact of water table on hierarchically nested groundwater flow system

doi: 10.26599/JGSE.2024.9280010
More Information
  • Corresponding author: zjun@mail.cgs.gov.cn
  • Received Date: 2023-10-13
  • Accepted Date: 2024-04-12
  • Available Online: 2024-06-10
  • Publish Date: 2024-06-30
  • Water table configuration gives rise to hierarchically nested groundwater flow systems. However, there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems. Moreover, it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale. Based on two ideal two-dimensional cross-section analytical models, this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors: Topography, geology and climate. Two criteria, C1 and C2, are utilized to address issues at different scales ranging from basin to local: (i) the influence of various factors on water table configuration; and (ii) the influence of water table on groundwater flow pattern. Then, the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion. The application of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for preliminarily determining the characteristics of water table configuration and its impact on flow systems. The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography, geology, and climate on groundwater flow patterns.
  • 加载中
  • Batelaan O, De Smedt F, Triest L. 2003. Regional groundwater discharge: Phreatophyte mapping, groundwater modelling and impact analysis of land-use change. Journal of Hydrology, 275: 86-108.
    Condon LE, Maxwell RM. 2015. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model. Water Resources Research, 51(8): 6602−6621. DOI: 10.1002/2014wr016774.
    Cardenas MB. 2007. Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow. Geophysical Research Letters, 34(5): L05403.
    Chen SM, Liu FT, Zhang Z, et al. 2021. Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years. China Geology, 4(3): 455−462. DOI: 10.31035/cg2021060.
    Dai X, Xie Y, Simmons CT, et al. 2021. Understanding topography-driven groundwater flow using fully-coupled surface-water and groundwater modeling. Journal of Hydrology, 594: 125950. DOI: 10.1016/j.jhydrol.2020.125950.
    Desbarats AJ, Logan CE, Hinton MJ, et al. 2002. On the kriging of water table elevations using collateral information from a digital elevation model. Journal of Hydrology, 255(1): 25−38. DOI: 10.1016/s0022-1694(01)00504-2.
    Dupuit J. 1863. Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux decouverts et a travers les terrains permeables avec des considerations relatives au regime des grandes eaux, au debouche a leur donner et a la marche des alluvions dans les rivieres a fond mobile. Dunod, éditeur. (in French)
    Engelen GB. 1996. Hydrological systems analysis: Methods and applications, ed. F. H. Kloosterman. Dordrecht: Kluwer Academic.
    Engelen GB, Jones GP. 1986. Developments in the analysis of groundwater flow systems. Iahs. Aghion, Philippe, Burgess, Robin and Mayer, C (Dis.), (1993) Fin.
    Fan Y, Miguez-Macho G, Weaver CP, et al. 2007. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. Journal of Geophysical Research Atmospheres, 112(D10).
    Forster C, Smith L. 1988. Groundwater flow systems in mountainous terrain: 1. Numerical modeling technique. Water Resources Research, 24(7): 999−1010. DOI: 10.1029/WR024i007p00999.
    Freeze RA, Cherry JA. 1979. Groundwater. Englewood Cliffs: Prentice-Hall.
    Freeze RA, Witherspoon PA. 1967. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation. Water Resources Research, 3(2): 623−634. DOI: 10.1029/WR003i002p00623.
    Goderniaux P, Davy P, Bresciani E, et al. 2013. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments. Water Resources Research, 49(4): 2274−2286. DOI: 10.1002/wrcr.20186.
    Gleeson T, Marklund L, Smith L, et al. 2011. Classifying the water table at regional to continental scales. Geophysical Research Letters, 38(5): L05401. DOI: 10.1029/2010gl046427.
    Gleeson T, Manning AH. 2008. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 44(10): 297−297. DOI: 10.1029/2008WR006848.
    Garven G. 1995. Continental-scale groundwater flow and geologic processes. Annual Review of Earth and Planetary Sciences, 23(1): 89−117. DOI: 10.1146/annurev.ea.23.050195.000513.
    Hou GC, Liang YP, Su XS, et al. 2010. Groundwater systems and resources in the Ordos Basin, China. Acta Geologica Sinica - English Edition, 82(005): 1061−1069. DOI: 10.1111/j.1755-6724.2008.tb00664.x.
    Haitjema HM, Mitchell-Bruker S. 2005. Are water tables a subdued replica of the topography? Ground Water, 43(6): 781-786.
    Jiang XW, Sun ZC, Zhao KY, et al. 2017. A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations. Journal of Hydrology, 548: 498−507. DOI: 10.1016/j.jhydrol.2017.03.026.
    Jiang XW, Wan L, Wang JZ, et al. 2014. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method. Geophysical Research Letters, 41(8): 2812−2819. DOI: 10.1002/2014GL059579.
    Jiang XW, Wan L, Ge SM, et al. 2012. A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resources Research, 48(12): W12502. DOI: 10.1029/2012wr012509.
    Jiang XW, Wang XS, Wan L, et al. 2011. An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resources Research, 47(1): 128−139. DOI: 10.1029/2010WR009346.
    Liu J, Cheng YP, Zhang FE, et al. 2023. Research hotspots and trends of groundwater and ecology studies: Based on a bibliometric approach. Journal of Groundwater Science and Engineering, 11(1): 20−36. DOI: 10.26599/JGSE.2023.9280003.
    Lévesque Y, Romain C, Julien W. 2023. Using geophysical data to assess groundwater levels and the accuracy of a regional numerical flow model. Hydrogeology Journal, 31(2): 351−370. DOI: 10.1007/s10040-023-02591-z.
    Liang X, Quan D, Jin M, et al. 2013. Numerical simulation of groundwater flow patterns using flux as upper boundary. Hydrological Processes, 27(24): 3475−3483. DOI: 10.1002/hyp.9477.
    Liang X, Liu Y, Jin M, et al. 2010. Direct observation of complex Tóthian groundwater flow systems in the laboratory. Hydrological Processes, 24(24): 3568−3573. DOI: 10.1002/hyp.7758.
    Ma Z, Wang W, Zhang Z, et al. 2024. River–groundwater interactions in the arid and semiarid areas of northwestern China. Hydrogeology Journal, 32: 37-57.
    Marchetti ZY, Carrillo Rivera JJ. 2014. Tracing groundwater discharge in the floodplain of the parana river, Argentina: Implications for its biological communities. River Research and Applications, 30(2): 166−179. DOI: 10.1002/rra.2629.
    Maxwell RM, Kollet SJ. 2008. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nature Geoscience, 1(10): 665−669. DOI: 10.1038/ngeo315.
    Muskat M. 1938. The flow of homogeneous fluids through porous media. Soil Science, 46(2): 169.
    Ning TS, Zhou S, Chang FY, et al. 2019. Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework. Agricultural and Forest Meteorology, 275: 59−68. DOI: 10.1016/j.agrformet.2019.05.001.
    Provost AM, Voss CI. 2001. Recharge-area nuclear waste repository in southeastern Sweden. Demonstration of hydrogeologic siting concepts and techniques. Sweden. SKI Report, 1: 44.
    Qu S, Wang C, Yang N, et al. 2023. Large-scale surface water-groundwater origins and connectivity in the Ordos Basin, China: Insight from hydrogen and oxygen isotopes. Environmental Research, 236: 116837. DOI: 10.1016/j.envres.2023.116837.
    Robinson NI, Love AJ. 2013. Hidden channels of groundwater flow in Tóthian drainage basins. Advances in Water Resources, 62(part A): 71−78. DOI: 10.1016/j.advwatres.2013.10.004.
    Tóth J. 1999. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeology Journal, 7(1): 1−14. DOI: 10.1007/s100400050176.
    Tóth J, Sheng G. 1996. Enhancing safety of nuclear waste disposal by exploiting regional groundwater flow: The recharge area concept. Hydrogeology Journal, 4(4): 4−25. DOI: 10.1007/s100400050252.
    Tóth J, Back W, Rosenshein JS, et al. 1988. Ground water and hydrocarbon migration. Hydrogeology, O-2. Geological Society of America.
    Tóth J. 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research (1896-1977), 68(16): 4795−4812. DOI: 10.1029/JZ068i016p04795.
    Wang XS, Wan L, Jiang XW, et al. 2017. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin. Advances in Water Resources, 108: 139−156. DOI: 10.1016/j.advwatres.2017.07.016.
    Wang JZ, Wörman A, Bresciani E, et al. 2016a. On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems. Journal of Hydrology, 47−58.
    Wang JZ, Jiang XW, Wan L, et al. 2016b. An analytical study on artesian flow conditions in unconfined-aquifer drainage basins. Water Resources Research, 51(10): 8658−8667. DOI: 10.1002/2015WR017104.
    Wang H, Jiang XW, Wan L, et al. 2015. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. Journal of Hydrology, 527: 433−441. DOI:10.1016/j. jhydrol. 2015.04. 063.
    Welch LA, Allen DM. 2012. Consistency of groundwater flow patterns in mountainous topography: Implications for valley bottom water replenishment and for defining groundwater flow boundaries. Water Resources Research, 48(5): W05526.1−W05526.16. DOI: 10.1029/2011WR010901.
    Wörman A, Packman AI, Marklund L, et al. 2006. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophysical Research Letters, 33(7): 359−377. DOI: 10.1029/2006GL025747.
    Winter TC. 1976. Numerical simulation analysis of the interaction of lakes and ground water. US Geological Suru. Prof. Paper, 1001.
    Yin LH, Hou GC, Tao ZP, et al. 2010. Origin and recharge estimates of groundwater in the ordos plateau, People's Republic of China. Environmental Earth Sciences, 60(8): 1731−1738. DOI: 10.1007/s12665-009-0310-3.
    Zhang J, Wang XS, Yin LH, et al. 2021. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems. Geophysical Research Letters, 48(16): 1−10. DOI: 10.1029/2020GL092337.
    Zhao KY, Jiang XW, Wang XS, et al. 2021. Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China. Hydrogeology Journal, 29(2): 567−577. DOI: 10.1007/s10040-020-02208-9.
    Zhao W, Lin YZ, Zhou PP, et al. 2021. Characteristics of groundwater in Northeast Qinghai-Tibet Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin. China Geology, 4(3): 377−388. DOI: 10.31035/cg2021053.
    Zhang J, Wang WK. Wang XY, et al. 2019. Seasonal variation in the precipitation recharge coefficient for the Ordos Plateau, Northwest China. Hydrogeology Journal, 27(2): 801−813. DOI: 10.1007/s10040-018-1891-2.
    Zech A, Zehner B, Kolditz O, et al. 2015. Impact of heterogeneous permeability distribution on the groundwater flow systems of a small sedimentary basin. Journal of Hydrology, 532: 90−101. DOI: 10.1016/j.jhydrol.2015.11.030.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Feng-dan Yu, Gang Qiao, Kai Wang, Xu Zhang, 2023: Investigation of groundwater characteristics and its influence on Landslides in Heifangtai Plateau using comprehensive geophysical methods, Journal of Groundwater Science and Engineering, 11, 171-182.  doi: 10.26599/JGSE.2023.9280015
    [2] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku, 2023: Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236.  doi: 10.26599/JGSE.2023.9280019
    [3] Peng-yu Shi, Jian-jun Liu, Yi-jie Zong, Kai-qing Teng, Yu-ming Huang, Liang Xiao, 2023: Analytical solution for Non-Darcian effect on transient confined-unconfined flow in a confined aquifer, Journal of Groundwater Science and Engineering, 11, 365-378.  doi: 10.26599/JGSE.2023.9280029
    [4] Guo-Qiang Yu, Qian Wang, Li-Feng Zhu, Xia Zhang, 2023: Regulation of vegetation pattern on the hydrodynamic processes of erosion on hillslope in Loess Plateau, China, Journal of Groundwater Science and Engineering, 11, 4-19.  doi: 10.26599/JGSE.2023.9280002
    [5] Wondesen Fikade Niway, Dagnachew Daniel Molla, Tarun Kumar Lohani, 2022: Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152.  doi: 10.19637/j.cnki.2305-7068.2022.02.004
    [6] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [7] Gang Qiao, Feng-dan Yu, Wen-ke Wang, Jun Zhang, Hua-qing Chen, 2022: Thermodynamic transport mechanism of water freezing-thawing in the vadose zone in the alpine meadow of the Tibet Plateau, Journal of Groundwater Science and Engineering, 10, 302-310.  doi: 10.19637/j.cnki.2305-7068.2022.03.008
    [8] Chu Yu, Li-jie Wu, Yi-long Zhang, Xiu-ya Wang, Zhan-chuan Wang, Zhou Zhang, 2022: Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau, Journal of Groundwater Science and Engineering, 10, 353-366.  doi: 10.19637/j.cnki.2305-7068.2022.04.004
    [9] O Boulariah, PA Mikhailov, A Longobardi, AN Elizariev, SG Aksenov, 2021: Assessment of prediction performances of stochastic models: Monthly groundwater level prediction in Southern Italy, Journal of Groundwater Science and Engineering, 9, 161-170.  doi: 10.19637/j.cnki.2305-7068.2021.02.008
    [10] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique, 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [11] XIA Fan, SONG Hong-wei, XU Tie-bing, SU Ya-nan, TIAN Xi-zhao, 2018: Basic environmental conditions of groundwater at a typical golf course, Journal of Groundwater Science and Engineering, 6, 136-149.  doi: 10.19637/j.cnki.2305-7068.2018.02.007
    [12] Ramasamy Jayakumar, Eunhee Lee, 2017: Climate change and groundwater conditions in the Mekong Region–A review, Journal of Groundwater Science and Engineering, 5, 14-30.
    [13] HOU Guang-cai, YIN Li-he, XU Dan-dan, 2017: Hydrogeology of the Ordos Basin, China, Journal of Groundwater Science and Engineering, 5, 104-115.
    [14] XIA Ri-yuan, 2016: Groundwater resources in karst area in Southern China and sustainable utilization pattern, Journal of Groundwater Science and Engineering, 4, 301-309.
    [15] ZHOU Yang-xiao, Parvez Sarwer Hossain, Nico van der Moot, 2015: Analysis of travel time, sources of water and well protection zones with groundwater models, Journal of Groundwater Science and Engineering, 3, 363-374.
    [16] , 2014: The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [17] Yu Liu, 2013: Comparison of Three Brine Migration Models in Groudwater, Journal of Groundwater Science and Engineering, 1, 70-73.
    [18] , 2013: Analysis of Groundwater Environmental Conditions and Influencing Factors in Typical City in Northwest China, Journal of Groundwater Science and Engineering, 1, 60-73.
    [19] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
    [20] Lihe Yin, Hongyun Ma, Jiaqiu Dong, Xiaoyong Wang, Ying Li, 2013: Using a Particle Tracking Method to Quantify Groundwater Circulation rates: a Case Study in the Ordos Plateau, Journal of Groundwater Science and Engineering, 1, 97-101.
  • 加载中

Catalog

    Figures(4)

    Article Metrics

    Article views (299) PDF downloads(144) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return