• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 12 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Mustafa JS, Mawlood DK. 2024. Developing three-dimensional groundwater flow modeling for the Erbil Basin using Groundwater Modeling System (GMS). Journal of Groundwater Science and Engineering, 12(2): 178-189 doi:  10.26599/JGSE.2024.9280014
Citation: Mustafa JS, Mawlood DK. 2024. Developing three-dimensional groundwater flow modeling for the Erbil Basin using Groundwater Modeling System (GMS). Journal of Groundwater Science and Engineering, 12(2): 178-189 doi:  10.26599/JGSE.2024.9280014

Developing three-dimensional groundwater flow modeling for the Erbil Basin using Groundwater Modeling System (GMS)

doi: 10.26599/JGSE.2024.9280014
More Information
  • Corresponding author: juan.sabah@yahoo.com
  • Received Date: 2023-12-30
  • Accepted Date: 2024-04-18
  • Available Online: 2024-06-12
  • Publish Date: 2024-06-30
  • This study presents the development of a comprehensive three-dimensional groundwater flow model for the Erbil Basin utilizing the Groundwater Modeling System (GMS). The Erbil Basin, situated in the Kurdistan Region of Iraq, is a vital water resource area facing increasing water demands and environmental challenges. The three-dimensional nature of the groundwater flow system is crucial for accurately understanding and managing water resources in the basin. The modeling process involved data collection, geological and hydrogeological characterization, conceptual model development, and numerical simulation using GMS software MODFLOW 2000 package. Various parameters such as hydraulic conductivity, recharge rates, and boundary conditions were integrated into the model to represent the complex hydrogeological conditions of the basin. Model calibration was performed by comparing simulated groundwater levels with observed data from monitoring wells across the basin, using the automatic calibration method of automated Parameter Estimation (PEST). Pilot points were applied to adjust the hydraulic conductivity in the model area spatially. Sensitivity analysis was conducted to assess the influence of key parameters on model predictions and to identify areas of uncertainty. The developed three-dimensional groundwater flow model provides valuable insights into the dynamics of groundwater flow, recharge-discharge mechanisms, and potential impacts of future scenarios such as climate change and water resource management strategies. It serves as a useful tool for decision-makers, water resource managers, and researchers to evaluate different management scenarios and formulate sustainable groundwater management policies for the Erbil Basin. In conclusion, this study demonstrates the effectiveness of using GMS for developing three-dimensional groundwater flow models in complex hydrogeological settings like the Erbil Basin, contributing to improved understanding and management of groundwater resources in the region.
  • 加载中
  • Al-Areedhi HH. 2019. Modelling of groundwater flow for the Iraqi Aquifers. Ph. D. Thesis, Iraq: University of Technology.
    Ali SM, Oleiwi AS. 2015. Modelling of groundwater flow of Khanaqin Area, Northeast Iraq. Iraqi Bulletin of Geology and Mining, 11(3): 83−94. Microsoft Word-5. Modelling: 83−94 (iasj. net)
    Al-Muqdadi SW. 2012. Groundwater investigation and modeling western desert of Iraq. Ph.D. Thesis. Germany: Faculty of Geosciences, GeoEngineering and Mining Technische Universität Bergakademie Freiberg Chair of Hydrogeology institute.
    Al-Mussawy WH. 2013. Optimum management models for groundwater use in Karbala desert area, PhD. Thesis. Iraq: Al-Mustansiriyah University.
    Anderson MP, William WW, Randall JH. 2015. Applied groundwater modeling: Simulation of flow and advective transport. Academic press, ISBN: 978−0-12-058103-0. DOI: 10.1016/B978-0-12-058103-0.00001-0.
    Bassi N, Kumar MD. 2012. Addressing the civic challenges: Perspective on institutional change for sustainable urban water management in India. Environment and Urbanization Asia, 3(1): 165−183. DOI: 10.1177/097542531200300.
    Chiang WH. 2010. Processing Modflow: An integrated modeling environment for the simulation of groundwater flow, transport and reactive processes. Users manual, manuscript, Simcore Software.
    Dizayee RH. 2014. Groundwater degradation and sustainability of the Erbil Basin, Erbil, Kurdistan Region, Iraq, M.S. Thesis. Texas: Christian University. Dizayee_tcu_0229M_10532. pdf
    Freeze RA, Cherry JA. 1979. Groundwater, Prentice-Hall, Inc., Englewood Cliffs, NJ, 604
    Hussain NM. 2008. Simulation of flow of groundwater in Karbala City. M.S. Thesis. Iraq: College of Engineering: University of Babylon.
    Hussien BM. 2012. Management of groundwater resources in Dhabaa Site-West Iraq. Iraqi Journal of Desert Studies, 4(1). ISSN: 1994-7801 (iasj. net)
    Jasim SM, Jalut QH. 2020. Modelling of groundwater flow of Baquba District area, Diyala Governorate, North-East, Iraq. Diyala Journal of Engineering Sciences, 13(3): 9-22. Elsevier instructions for the preparation of a2-column-format camera ready paper (iasj. net)
    Karim IR, Ali AMA. 2017. Artificial recharge of groundwater by injection wells (Case Study). International Journal of Scientific Engineering and Technology Research, 6(31): 6193-6196.
    Khayyun TS, Mahdi HH. 2020. Estimation of average groundwater recharge by using groundwater modelling system (GMS) program for upper zone of Iraqi aquifers system. Journal of Critical Reviews , 7(9): 3094−112.
    Mawlood DK. 2019. Sustainability of aquifer and ground water condition in Erbil basin/Iraq. ZANCO journal of pure and applied sciences, 31(6). DOI: 10.21271/ZJPAS.31.6.6.
    McDonald MG, Arlen WH. 1988. A modular three-dimensional finite-difference ground-water flow model. US Geological Survey.
    Mohammed AF, Smail QS, Kettanah AY. 2013. Environmental significance of major and trace elements in the soils of selected areas in Erbil City, Kurdistan Region, Northern Iraq. Iraqi National Journal of Earth Science, 13(2): 15-32.
    Mustafa JS, Mawlood DK. 2023. Estimating of groundwater recharge in North, Central, and South Basin of Erbil. Mathematical Modelling in Civil Engineering, 18(1): 14-24-2023.
    Mustafa JS, Mawlood DK. 2023. Mapping groundwater levels in Erbil Basin. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 93(1): 21-38.
    Ramadhan A, Al-jabbari M, Al-kubaisi R. 2013. Evaluation of recharging arid and semi-arid regions (Case Study of Dibdibba Formation, Karbala Plateu Najaf). Iraqi Journal of Science, 54: 902−910.
    Seeyan S. 2020. Groundwater flow modeling for Qushtap Plain unconfined aquifer in Southern Erbil Basin, Kurdistan Region, Iraq. Journal of Geoscience and Environment Protection, 8(03): 116.
    Seeyan S, Merkel B. 2015. Groundwater modeling of Harrir plainand Mirawa valley in Shaqlawa-Harrir basins, Kurdistan Region, Iraq. FOG-Freiberg Online Geoscience, 38: 45.
    Shekhmamundy IH, Surdashy AM. 2022. Geomorphological analysis and distribution of landform of Erbil Masterplan Layout. The Iraqi Geological Journal, 55(2F): 197−211. DOI: 10.46717/igj.55.2F.14ms-2022-12-29.
    Yashooa NK, Mawlood DK. 2023. Modeling contamination transport (Nitrate) in Central Basin Erbil, Kurdistan Region, Iraq with Support of MODFLOW Software. The Iraqi Geological Journal, 56(1E): 234−246. DOI: 10.46717/igj.56.1E.18ms-2023-5-28.
    Yashooa NK, Mawlood DK. 2023. Numerical modelling of groundwater flow and contamination transport (TDS) in Kaniqurzala Area-Central Basin–Erbil City-Kurdistan-Iraq. Zanco Journal of Pure and Applied Sciences, 35(3): 17−29. DOI: 10.21271/ZJPAS.35.3.2.
    Zwain HH, Abed BS. 2023. Groundwater flow Modeling and hydraulic assessment of Al-Ruhbah region, Iraq. Journal of the Mechanical Behavior of Materials, 32(1): 20220214. DOI: 10.1515/jmbm-2022-0214.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Masoud H Hamed, Rebwar N Dara, Marios C Kirlas, 2024: Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq, Journal of Groundwater Science and Engineering, 12, 16-33.  doi: 10.26599/JGSE.2024.9280003
    [2] Fatemeh Einlo, Mohammad Reza Ekhtesasi, Mehdi Ghorbani, Parviz Abdinejad, 2023: Determine the most appropriate strategy for groundwater management in arid and semi-arid regions, Abhar Plain, Iran, Journal of Groundwater Science and Engineering, 11, 97-115.  doi: 10.26599/JGSE.2023.9280010
    [3] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad, 2023: Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277.  doi: 10.26599/JGSE.2023.9280022
    [4] Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng, 2023: Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80.  doi: 10.26599/JGSE.2023.9280007
    [5] Qing-shan Li, Xiao-bing Kang, Mo Xu, Bang-yan Mao, 2023: Effects of coal mining and tunnel excavation on groundwater flow system in karst areas by modeling: A case study in Zhongliang Mountain, Chongqing, Southwest China, Journal of Groundwater Science and Engineering, 11, 391-407.  doi: 10.26599/JGSE.2023.9280031
    [6] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [7] Laouni Benadela, Belkacem Bekkoussa, Laouni Gaidi, 2022: Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria, Journal of Groundwater Science and Engineering, 10, 233-249.  doi: 10.19637/j.cnki.2305-7068.2022.03.003
    [8] Qiao-ling YUAN, Zhi-ping LI, Lei-cheng LI, Shu-li WANG, Si-yu YAO, 2020: Pharmaceuticals and personal care products transference-transformation in aquifer system, Journal of Groundwater Science and Engineering, 8, 358-365.  doi: 10.19637/j.cnki.2305-7068.2020.04.006
    [9] BELOUANAS Hemza, MENANI Mohamed Redha, 2019: Characterization of Continental Intercalaire aquifer (CI) in the Tinrhert-East Area-Illizi Basin on the Algerian-Libyan Border, Journal of Groundwater Science and Engineering, 7, 115-132.  doi: 10.19637/j.cnki.2305-7068.2019.02.003
    [10] A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [11] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine, 2019: Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [12] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson, 2019: Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [13] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [14] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [15] Duong D Bui, Nghia C Nguyen, Nuong T Bui, Anh T T Le, Dao T Le, 2017: Climate change and groundwater resources in Mekong Delta, Vietnam, Journal of Groundwater Science and Engineering, 5, 76-90.
    [16] WANG Ying, CHEN Zong-yu, 2016: Responses of groundwater system to water development in northern China, Journal of Groundwater Science and Engineering, 4, 69-80.
    [17] CHENG Yan-pei, DONG Hua, 2015: Groundwater system division and compilation of Groundwater Resources Map of Asia, Journal of Groundwater Science and Engineering, 3, 127-135.
    [18] ZHANG Zhi-qiang, LI Hong-chao, WANG Yu-qing, ZHANG li-ye, WANG Ying, 2014: Application of Visual MODFLOW to simulation of migration in Cr6+ contaminated site, Journal of Groundwater Science and Engineering, 2, 28-35.
    [19] Shi-jie Xie, Qiang Zhang, Yu-chong Qiu, 2013: Simulation and Prediction of the Fluorides Migration in a Tailing Pond Using Modflow, Journal of Groundwater Science and Engineering, 1, 33-39.
    [20] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner, 2013: Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
  • 加载中

Catalog

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (34) PDF downloads(12) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return