• ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 3 Issue 2
Oct.  2015
Turn off MathJax
Article Contents
ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei. Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China[J]. Journal of Groundwater Science and Engineering, 2015, 3(2): 136-146.
Citation: ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei. Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China[J]. Journal of Groundwater Science and Engineering, 2015, 3(2): 136-146.

Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China

  • This paper analyzed regional hydrogeochemical evolution characteristics of groundwater with respect to hydrogeological conditions in the Guanzhong Basin, China. Coefficient variation in the subregion between the Shichuan River and Luo River of the Guanzhong Basin is larger than other subregions, reflecting the more complicated hydrogeological conditions of this subregion. The hydrochemical components and hydrodynamic conditions of this area have distinct horizontal zoning characteristics, and hydrodynamic conditions play a controlling role in the groundwater’s hydrochemistry. The relationship between ions, and between ions and TDS (total dissolved solids) can give an indication of many charteristics of grounwater such as evaporation intensity, ion exchange, and the sources of chemical components. Results indicated that for the coefficient of variation (the coefficient of variation is a statistical measure of the distribution or dispersion of data around mean. This measure is used to analyze the difference of spread in the data relative to the mean value. Coefficient of variation is derived by dividing the standard deviation by the mean), the minimum value of pH parameters is 0.03-0.07, the minimum value of HCO3- parameters is 0.24, while the maximum is the SO42- coefficinet at 1.67. A PHREEQC simulation demonstrated that different simulation paths roughly have the same trend in dissolution and precipitation of minerals. Along the direction of groundwater flow, the predminant precipitation is of calcite and gypsum and the cation exchange of Na+ and Ca2+ in some paths. However, in other paths, the precipitation of calcite and dissolution of gypsum and dolomite are the main actions, as well as the exchange of Mg2+ and Ca2+ in addition to Na+ and Ca2+.
  • 加载中
  • [1]
    CAO Yu-qing, HU Kuan-rong, LI Zhen-shuan. 2009. Groundwater chemical kinetics and eco-environmental zonation. Beijing: Science Press, 12-17 .
    [2]
    Dickson A, Abass G, et al. 2011. Hydro- geochemical evolution and groundwater flow in the Densu River Basin, Ghana. Journal of Water Resource and Protection, 3(7):548-561 .
    [3]
    ZHAO Min, ZENG Cheng, et al. 2010. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chenqi and Dengzhahe, Puding, Guizhou, SW China. Journal of Hydrology, 388(1-2): 121-130 .
    [4]
    YE Si-yuan, SUN Ji-chao, et al. 2002. Current situation and advances in hydrogeochemical researches. Acta Geoscientia Sinica, 23(5): 477-482 .
    [5]
    Intissar F, Rim T, et al. 2013. Hydrogeochemical processes affecting groundwater in an irrigated land in Central Tunisia. Environmental Earth Sciences, 68(5): 1215-1231 .
    [6]
    Laura E T, James A S. 1999. Modeling alternative paths of chemical evolution of Na-HCO3 type groundwater near Oak Ridge, Tennessee, USA. Hydrogeology Journal, 7(4):355-364 .
    [7]
    DUAN Lei, WANG Wen-ke, et al. 2007. Hydrochemical characteristics and formation mechanics of groundwater in the middle of northern slope of Tianshan Mountains. Journal of Arid Land Resources and Environment, 21(9):29-35 .
    [8]
    José J L, Carlos E G R S, et al. 2012. Hydrogeochemistry of sulfate-affected landscapes in Keller Peninsula, Maritime Antarctica. Geomorphology, 155(12):55-61 .
    [9]
    Christian E, Allan T E. 2001. Uncertainties in solubility calculations. Chemical Monthly, 132(10):1171-1179 .
    [10]
    WANG Xue-quan, GAO Qian-zhao. 2002. Sustainable development and management of water resources in the Hei River Basin of north-west China. International Journal of Water Resources Development, 18(2): 335-352 .
    [11]
    HE Jin, AN Yong-hui, et al. 2013. Geochemical characteristics and fluoride distribution in the groundwater of the Zhangye Basin in Northwestern China. Journal of Geochemical Exploration, 135(6):22-30 .
    [12]
    Schoeller H. 1977. Geochemistry of groundwater. In: Brown, R.H., Konoplyantsev, A.A., Ineson, J., Kovalevsky, V.S. (Eds.), Groundwater Studies-An International Guide for Research and Practice. Paris: UNESCO, 1-18 .
    [13]
    QIN Da-jun, Jeffrey V T, PANG Zhong-he. 2005. Hydrogeochemistry and groundwater circula- tion in the Xi’an geothermal field, China. Geothermics, 34(4): 471-494 .
    [14]
    CUI Xian-wei, WU Jian-hua, et al. 2010. Evolution and geochemical modeling of groundwater in Jingyuan Country. South- to-North Water Transfers and Water Science & Technology, 8(6):42-45 .
    [15]
    WANG Da-chun, ZHANG Ren-quan, et al. 1995. Hydrological geology basis. Beijing: Geological Publishing Press, 60-62 .
    [16]
    Sandow M Y, Bruce B Y, et al. 2010. Analysis of groundwater quality using multivariate and spatial analyses in the Keta Basin, Ghana. Journal of African Earth Sciences, 58(2): 220-234 .
    [17]
    Anwar A E. 2010. Hydrogeochemical charac- teristics and evolution of groundwater at the Ras Sudr-Abu Zenima area, southwest Sinai, Egypt. Earth Sci, 21(1):79-109 .
    [18]
    Stephanie A O, Andrew A A, et al. 2012. Hydrogeochemical characteristics of some Cameroon bottled waters, investigated by multivariate statistical analyses. Journal of Geochemical Exploration, 112(1):118-130 .
    [19]
    Salifu A, Petrusevski B, et al. 2012. Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana. Journal of Contaminant Hydrology, 140- 141(4):34-44 .
    [20]
    HE Jian-hua, MA Jin-zhu, et al. 2012. Groundwater recharge environment and hydrogeochemical evolution in the Jiuquan Basin, Northwest China. Applied Geoche- mistry, 27(4):866-878 .
    [21]
    LI Jun-xia, SU Chun-li, et al. 2010. Application of multivariate statistical analysis to research the environment of groundwater: a case study at Datong Basin, Northern China. Geological Science and Technology, 29(6):94-100 .
    [22]
    Richer B C, Kreitler C W. 1993. Geochemical techniques for identifying sources of groundwater salinization. Florida: CRC Press, 15-37 .
    [23]
    Grande J A, Carrego B, et al. 2013. Hydrogeochemical variables regionalize- tion-applying cluster analysis for a seasonal evolution model from an estuarine system affected by AMD. Marine Pollution Bulletin, 69(1-2):150-156 .
    [24]
    Biswajeet P, Saied P. 2011. Hydro-chemical analysis of the groundwater of catchments: upper Bhatsai region, Maharastra. The Open Hydrology Journal, 5:51-57 .
    [25]
    WANG Ya, JIAO Jiu-jimmy. 2012. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. Journal of Hydrology, 438-439(7):112-124 .
    [26]
    XIE Xian-jun, WANG Yan-xin, et al. 2013. Hydrogeochemical and isotopic investigations on groundwater salinization in the Datong Basin, Northern China. Journal of the American Water Resources Association, 49(2):402-414 .
    [27]
    Schoeller H. 1967. Hydrodynamique dans le karst (Hydrodynamics of karst). Actes du Colloques de Doubronik. Wallingford: IAHS/ UNESCO, 3-20 .
    [28]
    Sunga K Y, Yuna S T, et al. 2012. Reaction path modeling of hydrogeochemiacl evolution of groundwater in granitic bedrocks, South Korea. Journal of Geochemical Exploration, 118:90-97 .
    [29]
    GUO Hua-ming, WANG Yan-xin. 2004. Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong Basin, China. Applied Geochemistry, 19(1):19-27 .
    [30]
    Jamshidzadeh Z, Mirbagheri S A. 2011. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination, 270(1-3):23-30 .
    [31]
    WANG Wen-ke, WANG Yan-lin, et al. 2006. Environmental evolution and renewable maintenance pathway of groundwater in Guanzhong Basin. Zhengzhou: The Yellow River Water Conservancy Press, 12:10-15 .
    [32]
    Alahmadi M E, Eifiky A A. 2009. Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia. Journal of King Saud University (Science), 21(3): 179-190 .
    [33]
    JIANG Gui-hua, WANG Wen-ke, et al. 2009. Groundwater special vulnerability and its assessment in Guanzhong Basin. Journal of Jilin University (Earth Science Edition), 39(6):1106-1116 .
  • [1] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine. Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria. Journal of Groundwater Science and Engineering, 2020, 8(2): 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [2] Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas. Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network. Journal of Groundwater Science and Engineering, 2020, 8(1): 87-96.  doi: 10.19637/j.cnki.2305-7068.2020.01.009
    [3] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA. Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco. Journal of Groundwater Science and Engineering, 2020, 8(2): 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [4] Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul. Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore. Journal of Groundwater Science and Engineering, 2020, 8(3): 259-273.  doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [5] LI Xiao-hang, WANG Rui, LI Jian-feng. Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain. Journal of Groundwater Science and Engineering, 2018, 6(3): 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [6] LI Bo, LI Xue-mei. Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area. Journal of Groundwater Science and Engineering, 2018, 6(4): 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [7] ZHOU Xun. Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China. Journal of Groundwater Science and Engineering, 2017, 5(4): 343-353.
    [8] Pezhman ROUDGARMI, Ebrahim FARAHANI. Investigation of groundwater quantitative change, Tehran Province, Iran. Journal of Groundwater Science and Engineering, 2017, 5(3): 278-285.
    [9] Khongsab Somphone, OunakoneKone Xayviliya. Climate change and groundwater resources in Lao PDR. Journal of Groundwater Science and Engineering, 2017, 5(1): 53-58.
    [10] Chamroeun SOK, Sokuntheara CHOUP. Climate change and groundwater resources in Cambodia. Journal of Groundwater Science and Engineering, 2017, 5(1): 31-43.
    [11] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng. Climate change and groundwater resources in China. Journal of Groundwater Science and Engineering, 2017, 5(1): 44-52.
    [12] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan. Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources. Journal of Groundwater Science and Engineering, 2017, 5(1): 1-13.
    [13] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping. Research on quality changes and influencing factors of groundwater in the Guanzhong Basin. Journal of Groundwater Science and Engineering, 2017, 5(3): 296-302.
    [14] LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei. Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid. Journal of Groundwater Science and Engineering, 2016, 4(2): 81-87.
    [15] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen. Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia. Journal of Groundwater Science and Engineering, 2015, 3(2): 176-185.
    [16] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU. Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III. Journal of Groundwater Science and Engineering, 2014, 2(1): 78-85.
    [17] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming. Characteristics-based classification research on typical petroleum contaminants of groundwater. Journal of Groundwater Science and Engineering, 2014, 2(4): 41-47.
    [18] ZHANG Cheng, Mahippong Worakul, WANG Jin-liang, PU Jun-bing, LYU Yong, ZHANG Qiang, HUANG Qi-bo. Hydrogeochemical Features of Karst in the Western Thailand. Journal of Groundwater Science and Engineering, 2014, 2(2): 18-26.
    [19] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu. Urban Waste Disposal and Its Impact on Groundwater Pollution in China. Journal of Groundwater Science and Engineering, 2013, 1(2): 88-95.
    [20] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen. Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend. Journal of Groundwater Science and Engineering, 2013, 1(1): 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (375) PDF downloads(626) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return