• ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 3 Issue 2
Oct.  2015
Turn off MathJax
Article Contents
LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling. A review of fluid flow and heat transfer in the CO2-EGS[J]. Journal of Groundwater Science and Engineering, 2015, 3(2): 170-175.
Citation: LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling. A review of fluid flow and heat transfer in the CO2-EGS[J]. Journal of Groundwater Science and Engineering, 2015, 3(2): 170-175.

A review of fluid flow and heat transfer in the CO2-EGS

  • 加载中
  • [1]
    Pan L, Webb S W, Oldenburg C M. 2011c. Analytical solution for two-phase flow in a wellbore using the drift-flux model. Advances in Water Resources, 34(12): 1656-1665.
    [2]
    Pruess K, Spycher N. 2007. ECO2N-a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Conversion and Management, 48(6): 1761-1767.
    [3]
    Borgia A, Pruess K, et al. 2013. Simulation of CO2-EGS in a fractured reservoir with salt precipitation. Energy Procedia, 37: 6617- 6624.
    [4]
    ZHANG Wei, XU Tian-fu, et al. 2013. A review of carbon dioxide-based enhanced geothermal system. Geological Science and Technology Information, 32 (3):177-182.
    [5]
    Vukalovich M P, Altunin V V. 1968. Thermophysicalproperties of carbon dioxide, translated into english under the direction of The United Kingdom Atomic Energy Authority, by Gaunt. London: DS, Collet’s (Publishers) Ltd.
    [6]
    SHI Yan. 2014. The operating mechanism and optimization research on carbon dioxide plume geothermal system in Quantou formation of Songliao Basin. Jilin University.
    [7]
    Pan L, Oldenburg C M, et al. 2011b. T2Well/ ECO2N Version 1.0: Multiphase and non- isothermal model for coupled wellbore- reservoir flow of carbon dioxide and variable salinity water. Lawrence Berkeley National Laboratory, 1-58.
    [8]
    YANG Shi-ming, XIAO Bao-cheng, YANG Qiang-sheng. 1992. Equivalent coupling diffusion model for heat-and-mass transfer inside the porous media. Journal of Shanghai Jiaotong University, 26 (6): 52-61.
    [9]
    Azaroual M, Pruess K, Fouillac C. 2007. Feasibility of using supercritical CO2 as heat transmission fluid in the EGS integrating the carbon storage constraints. In: Engine Enhanced Geothermal Innovative Network for Europe Workshop 2, 47.
    [10]
    ZHOU Zhi-fang, WANG Jin-guo. 2004. Dynamics of fluids in fractured media. Beijing: China Water & Power Press.
    [11]
    Pan L, Oldenburg C M. 2013. T2Well-an integrated wellbore-reservoir simulator. Computers & Geosciences, 65(7):46–55.
    [12]
    Pan L, Freifeld B, et al. 2015. Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid. Geothermics, 53: 100-113.
    [13]
    XU T, Rose P, et al. 2009. On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent. Geofluids, 9(2):167-177.
    [14]
    Baria R, Michelet S, et al. 2005. Creation and mapping of 5 000 m deep HDR/HFR reservoir to produce electricity. In: Proceedings of the World Geothermal Congress 2005, 1627.
    [15]
    HU Li-tang, PAN Le-hua, ZHANG Ke-ni. 2012. Modeling brine leakage to shallow aquifer through an open wellbore using T2WELL/ ECO2N. International Journal of Greenhouse Gas Control, 9: 393-401.
    [16]
    Pruess K, 2008. On Production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Conversion and Management, 49(6): 1446-1454.
    [17]
    Fouillac C, Sanjuan B, et al. 2004. Could sequestration of CO2 be combined with the development of enhanced geothermal systems. In: Third Annual Conference on Carbon Capture and Sequestration, Alexandria, VA.
    [18]
    MA Yong-sheng, CAI Xun-yu, LI Guo-wei. 2005. Basic characteristics and concentration of the Puguang gas field in the Sichuan Basin. Acta Geologica Sinica, 79 (6): 858-865.
    [19]
    Spycher N, Pruess K. 2010. A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: Application to CO2-enhanced geothermal systems. Transport Porous Media, 82(1): 173–196.
    [20]
    WANG Gui-ling. 2012. Geothermal resources in China and its potential. First international conference of highly-efficient development and utilization of geothermal resources at medium and deep levels. China University of Geosciences (Beijing), 15-17.
    [21]
    ZHAO Yang-sheng, WAN Zhi-jun, et al. 2010. Experimental study of related laws of rock thermal cracking and permeability. Chinese Journal of Rock Mechanics and Engineering, 29(10): 1970-1976.
    [22]
    ZHANG Ke-ni, WU Yu-Shu, Pruess K. 2008. User’s guide for TOUGH2-MP-a massively parallel version of the TOUGH2 code. Report LBNL-315E, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
    [23]
    Pan F, McPherson B, et al. 2013. Numerical evaluation of energy extraction, CO2-rock interactionsand carbon sequestration in enhanced geothermal system (EGS) with supercritical CO2 as a working fluid. In: Proceedings of 38th Workshop on Geothermal Reservoir Engineering, Stanford University, CA, USA, 11-13.
    [24]
    Dezayes C, Genter A, Hooijkaas G R. 2005. Deep-Seated geology and fracture system of the EGS soultz reservoir (France) based on recent 5 km depth boreholes. In: Proceedings of World Geothermal Congress 2005, Paper 1612, Antalya, Turkey, 24-29.
    [25]
    Brown D. 1995. The US hot dry rock program-20 years of experience in reservoir testing. In: Proceedings World Geothermal Congress, 2607-2611.
    [26]
    Marcolini M, Battistelli A, Marcolini M. 2012. Modeling of wellbore flow within geothermal reservoir simulations at field scale. In: Proceeding TOUGH Symposium, 17-19.
    [27]
    Batchelor A S. 1986. Reservoir behaviour in a stimulated hot dry rock system. In: 11th Workshop on Geothermal Reservoir Engineering Stanford University Calif, 35-41.
    [28]
    Pan L, Oldenburg C M, et al. 2011a. Transient CO2 leakage and injection in wellbore-reservoir systems for geologic carbon sequestration. Greenhouse Gases: Science & Technology, 1(4): 335-350.
    [29]
    XU T, ZHANG W, Pruess K. 2010. Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems. Lawrence Berkeley National Laboratory, Berkeley, California, USA.
    [30]
    Magliocco M, Kneafsey T J, et al. 2011. Laboratory experimental study of heat extraction from porous media by means of CO2. In: Proceedings of the Thirty-Sixth Workshop on Geothermal Reservoir Engineering.
    [31]
    Sasaki S. 1998. Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan. Tectonophysics, 289(1-3): 171-188.
    [32]
    XU T, Sonnenthal E, Spycher N. 2008. TOUGHREACT user’s guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media, V1.2.1. Lawrence Berkeley National Laboratory, Berkeley, California, USA.
    [33]
    Petro M, Song L, et al. 2012. System and methodology for rapid evaluation of geothermal rock-fluid interactions associated with CO2-EGS. In: Proceedings, 37th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
    [34]
    WANG Ji-yang, HU Sheng-biao, et al. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Science and Technology Review, 30(32): 25-31.
    [35]
    LING Lu-lu, ZHANG Ke-ni. 2013. Research on model of the wellbore leakage of CO2 geo-sequestration with instantaneous non- Darcy flow methods. Ground Water, 35 (3): 1-5, 12.
    [36]
    WANG Fu-gang, NA Jin, GENG Xin-xin. 2013. The impacts of different CO2 injection temperatures on heat extraction rate in CO2 enhanced geothermal system: Based on the CCS demonstration project in Erdos. Science & Technology Review, 31(8): 32-37.
    [37]
    Hsieh J C, Lin D T W, et al. 2014. The design of heat pipe heat exchanger for CO2 EGS. Applied Mechanics and Materials, 479-480: 284-288.
    [38]
    Atrens A D, Gurgenci H, Rudolph V. 2008a. Subsurface effects in a CO2 engineered geothermal system thermosiphon. In: Proceedings, New Zealand Geothermal Workshop, Auckland, New Zealand.
    [39]
    ZHAO Yang-sheng, WAN Zhi-jun, KANG Jian-rong. 2014. HDR geothermal development introduction. Beijing: Science Press.
    [40]
    WANG Ji-yang. 2009. Analyzing the development and utilization of geothermal resources in China by comparing the world geothermal resources development. Scientific develop- ment of geothermal resources in China- Collected papers from the high-level symposium of scientific development of thermal resources in China. Beijing: Geological Publishing House, 3-6.
    [41]
    Pruess K. 2006. Enhanced geothermal systems (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 35(4): 351-367.
    [42]
    Tester J W, Anderson B J, et al. 2006. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century, a report for the U.S. Department of Energy. Massachusetts Institute of Technology, 209.
    [43]
    Pruess K, Spycher N. 2010. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid-A scheme for combining recovery of renewable energy with geologic storage of CO2. In: Proceedings World Geothermal Congress, Bali, Indonesia, 1-6.
    [44]
    JIANG Pei-xun, WANG Bu-xuan, et al. 1996. Flow and heat transfer of monophasic fluid in saturated porous media. Journal of Engineering Thermophysics, 17 (1): 90-94.
    [45]
    LI Ke-wen, QIN Tong-luo. 1990. Fractal geometry and its application in oil industry. Petroleum Exploitation and Development, 17(5): 109-114.
    [46]
    Pruess K, Oldenburg C, Moridis G. 1999. TOUGH2 user’s guide, version 2.0, Lawrence Berkeley Laboratory Report LBL43134. Berkeley: University of California.
    [47]
    Brown D W. 2000. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, 233-238.
    [48]
    LIN Wen-jing, LIU Zhi-ming, et al. 2013. The assessment of geothermal resources potential of China. Geology in China, 40 (1): 312-321.
    [49]
    XU Tian-fu, ZHANG Yan-jun, et al. 2012. Technology progress in an enhanced geothermal system (hot dry rock). Science & Technology Review, 30 (32):42-45.
    [50]
    XU T, Sonnenthal E, et al. 2004. TOUGHREACT user’s guide: A simulation program for non-isothermal multiphase reactive geochemi- cal transport in variably saturated geological media. Lawrence Berkeley Laboratory Report 55460, V.1.2., Berkeley, California, USA.
    [51]
    WAN Y, Xu T, Pruess K. 2011. Impact of fluid-rock interactions on enhanced geothermal systems with CO2 as heat transmission fluid. In: Proceedings Thirty- Sixth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, 33-35.
    [52]
    Atrens A D, Gurgenri H, Rudolph V. 2011. Economic optimization of a CO2-based EGS power plant. Energy Fuels, 25(8): 3765-3775.
    [53]
    YIN Li-he. 2010. Another peak is witnessed in the utilization of geothermal resources- information from 2010 World Geothermal Congress. Land & Resources, (6):33.
    [54]
    Atrens A D, Gurgenci H, Rudolph V. 2008b. CO2 thermosiphon for competitive geothermal power generation. Energy Fuels, 23(1): 553-557.
    [55]
    NA Jin, WANG Fu-gang, et al. 2012. The impacts of different CO2 injection temperature on heat extraction rate in CO2-EGS based on CCS demonstration project. Advanced Materials Research, 588-589: 21-26.
    [56]
    XU Shi-guang, GUO Yuan-sheng. 2009. Geothermy. Beijing: Science Press.
    [57]
    Baria R, Baumg?rtner J, et al. 1999. HDR/HWR reservoirs: Concepts, understanding and creation. Geothermics, 28(4-5): 533-552.
    [58]
    SI Shi-rong. 2009. Power generation by HDR in Australia. Geothermal Energy, (3): 34-36.
  • [1] ZHANG Chun-chao, HOU Xin-wei, LI Xiang-quan, WANG Zhen-xing, GUI Chun-lei, ZUO Xue-feng, MA Jian-fei, GAO Ming. Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China. Journal of Groundwater Science and Engineering, 2020, 8(3): 210-222.  doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [2] LIU Feng, WANG Gui-ling, ZHANG Wei, YUE Chen, TAO Li-bo. Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China. Journal of Groundwater Science and Engineering, 2020, 8(4): 328-337.  doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [3] LI Wen-yon, FU Li, ZHU Zheng-feng. Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18. Journal of Groundwater Science and Engineering, 2019, 7(2): 133-144.
    [4] ZHU Heng-hua, JIA Chao, XU Yu-liang, YU Ze-min, YU Wei-jiang. Study on numerical simulation of organic pollutant transport in groundwater northwest of Laixi. Journal of Groundwater Science and Engineering, 2018, 6(4): 293-305.  doi: 10.19637/j.cnki.2305-7068.2018.04.005
    [5] GUO Chun-yan, CUI Ya-li, LIU Wen-na, CUI Xiang-xiang, FEI Yu-hong. Research on numerical simulation of the groundwater funnels restoration in Shijiazhuang. Journal of Groundwater Science and Engineering, 2018, 6(2): 126-135.
    [6] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li. Numerical simulation of response of groundwater flow system in inland basin to density changes. Journal of Groundwater Science and Engineering, 2018, 6(1): 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [7] WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui. Study on the geothermal production and reinjection mode in Xiong County. Journal of Groundwater Science and Engineering, 2018, 6(3): 178-186.  doi: 10.19637/j.cnki.2305-7068.2018.03.003
    [8] ZHAN Jiang, LI Wu-jin, LI Zhi-ping, ZHAO Gui-zhang. Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column. Journal of Groundwater Science and Engineering, 2018, 6(3): 205-219.  doi: 10.19637/j.cnki.2305-7068.2018.03.006
    [9] ZHANG Chun-chao, LI Xiang-quan, GAO Ming, HOU Xin-wei, LIU Ling-xia, WANG Zhen-xing, MA Jian-fei. Exploitation of groundwater resources and protection of wetland in the Yuqia Basin. Journal of Groundwater Science and Engineering, 2017, 5(3): 222-234.
    [10] LIU Jun-qiu, XIE Xin-min. Numerical simulation of groundwater and early warnings from the simulated dynamic evolution trend in the plain area of Shenyang, Liaoning Province (P.R. China). Journal of Groundwater Science and Engineering, 2016, 4(4): 367-376.
    [11] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li. Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow. Journal of Groundwater Science and Engineering, 2016, 4(1): 12-17.
    [12] FENG Guan-hong, XU Tian-fu, ZHU Hui-xing. Dynamics of fluid and heat flow in a CO2-based injection-production geothermal system. Journal of Groundwater Science and Engineering, 2016, 4(4): 377-388.
    [13] LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei. Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid. Journal of Groundwater Science and Engineering, 2016, 4(2): 81-87.
    [14] ZHANG Pei-feng. Thermal stresses analysis of casing string used in enhanced geothermal systems wells. Journal of Groundwater Science and Engineering, 2016, 4(4): 293-300.
    [15] QI Jian-feng, TIAN Meng-ke, CHI Xiu-cheng, WANG Cheng-zhen. Research on ground fissure origins and mechanisms in Hebei Plain, P. R. China. Journal of Groundwater Science and Engineering, 2016, 4(3): 188-196.
    [16] WANG Ji-ning, MENG Yong-hui. Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China. Journal of Groundwater Science and Engineering, 2016, 4(2): 149-156.
    [17] YUE Gao-fan, LV Wen-bin, ZHANG Wei, SU Ran, LIN Wen-jing. Optimization of geothermal water exploitation in Xinji, Hebei Province, P. R. China. Journal of Groundwater Science and Engineering, 2016, 4(3): 197-203.
    [18] WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li. Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong. Journal of Groundwater Science and Engineering, 2015, 3(4): 342-350.
    [19] YANG Yun, WU Jian-feng, LIU De-peng. Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China. Journal of Groundwater Science and Engineering, 2015, 3(4): 352-362.
    [20] WEI Jia-hua, CHU Hai-bo, WANG Rong, JIANG Yuan. Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing. Journal of Groundwater Science and Engineering, 2015, 3(4): 316-330.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (328) PDF downloads(968) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return