Citation: | ZHANG Chuan-mian, GUO Xiao-niu, Richard Henry, et al. 2015: Groundwater modelling to help diagnose contamination problems. Journal of Groundwater Science and Engineering, 3(4): 285-294. |
Niswonger Richard G, Sorab Panday, Ibaraki Motomu. 2011. MODFLOW-NWT, A Newton formulation for MODFLOW-2005. Reston: U.S. Geological Survey Techniques and Methods 6-A37, 44.
|
Zheng Chun-miao, Wang P. Patrick. 1999. MT3DMS: A modular three dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems: Documentation and user’s guide, Contract Report SERDP-99-1. Washington, DC: U.S. Army Engineer Research and Development.
|
[1] | Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar, 2022: Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005 |
[2] | Yang Hui-feng, Meng Rui-fang, Bao Xi-lin, Cao Wen-geng, Li Ze-yan, Xu Bu-yun, 2022: Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain, Journal of Groundwater Science and Engineering, 10, 113-127. doi: 10.19637/j.cnki.2305-7068.2022.02.002 |
[3] | Kirlas Marios C, 2021: Assessment of porous aquifer hydrogeological parameters using automated groundwater level measurements in Greece, Journal of Groundwater Science and Engineering, 9, 269-278. doi: 10.19637/j.cnki.2305-7068.2021.04.001 |
[4] | Nguyen Van Hoang, 2021: Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data, Journal of Groundwater Science and Engineering, 9, 292-303. doi: 10.19637/j.cnki.2305-7068.2021.04.003 |
[5] | Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum, 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007 |
[6] | Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002 |
[7] | Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006 |
[8] | YANG Ai-lin, JIANG Si-min, LIU Jin-bing, JIANG Qian-yun, ZHOU Ting, ZHANG Wen, 2020: Groundwater contaminant source identification based on iterative local update ensemble smoother, Journal of Groundwater Science and Engineering, 8, 1-9. doi: 10.19637/j.cnki.2305-7068.2020.01.001 |
[9] | Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique, 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008 |
[10] | SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003 |
[11] | SRISUK Kriengsak, NETTASANA Tussanee, 2017: Climate change and groundwater resources in Thailand, Journal of Groundwater Science and Engineering, 5, 67-75. |
[12] | Than Zaw, Maung Maung Than, 2017: Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66. |
[13] | ZHANG Sheng, ZHANG Cui-yun, HE Ze, CHEN Li, ZHANG Fa-wang, YIN Mi-ying, NING Zhuo, SUN Zhen-hua, ZHEN Shi-jun, 2016: Application research of enhanced in-situ micro-ecological remediation of petroleum contaminated soil, Journal of Groundwater Science and Engineering, 4, 157-164. |
[14] | DONG Hua, GE Li-qiang, 2015: Groundwater ecological environment and the mapping of Asia, Journal of Groundwater Science and Engineering, 3, 118-126. |
[15] | YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen, 2015: Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185. |
[16] | Ramasamy Jayakumar, 2015: Groundwater level monitoring-importance global groundwater monitoring network, Journal of Groundwater Science and Engineering, 3, 295-305. |
[17] | CHENG Yan-pei, DONG Hua, 2015: Groundwater system division and compilation of Groundwater Resources Map of Asia, Journal of Groundwater Science and Engineering, 3, 127-135. |
[18] | Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner, 2013: Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59. |
[19] | Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27. |
[20] | Zhao-xian Zheng, Xiao-si Su, 2013: Risk Assessment on Organic Contamination of Shallow Groundwater of an Oilfield in Northeast China, Journal of Groundwater Science and Engineering, 1, 75-82. |
Welcome to Journal of Groundwater Science and Engineering!
Quick Submit