Citation: | Duong D Bui, Nghia C Nguyen, Nuong T Bui, et al. 2017: Climate change and groundwater resources in Mekong Delta, Vietnam. Journal of Groundwater Science and Engineering, 5(1): 76-90. |
Vuong B T. 2014. Report on assessing the climate change impacts on Mekong Delta’s groundwater resources and proposing feasible solutions .
|
Feng S, Kang S, et al. 2008. Neural networks to simulate regional ground water levels affected by human activities. Ground Water, 46(1): 80-90 .
|
Mekong Delta. Scentific Institute on Meteorology, Hydrology and Environment (an unpublished report) .
|
Southern Hydrometeorological Station. 2010. Hydrological and meteorological documentary in the period 1999-2010 .
|
Taormina R, Chau K W, et al. 2012. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence, 25(8): 1670-1676 .
|
DWRPIS. 2010. Report on the groundwater monitoring results for Southern Region. Division for Water Resources Planning and Investigation for the South of Viet Nam .
|
Nayak P C, Rao Y R S, et al. 2006. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 20(1): 77-90 .
|
Batelaan O, Woldeamlak S T. 2004. ArcView interface for WetSpass, user manual. Version 19-5-2004, Vrije Universiteit Brussel, Brussels, Belgium .
|
Yoon H, Jun S C, et al. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396(1): 128-138 .
|
Sethi R R, Kumar A, et al. 2010. Prediction of water table depth in a hard rock basin by using artificial neural network. International Journal of Water Resources and Environ?mental Engineering, 4(2): 95-102 .
|
Hasan Sirhan, Manfred Koch. Prediction of dynamic groundwater levels in the Gaza. Kassel: Department of Geohydraulics and Engineering Hydrology. Faculty of Civil Engineering, Kassel University, 34125 .
|
Nghinh L V. 2005. Hydrologic model. Ho Chi Minh City: Thuy Loi University .
|
Quyen N K. 2007. The status of water exploitation in Southern Plain, Ho Chi Minh City .
|
2305-7068/© Journal of Groundwater Science and Engineering Editorial Office.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
[1] | Liang Zhu, Ming-nan Yang, Jing-tao Liu, Yu-xi Zhang, Xi Chen, Bing Zhou, 2022: Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects, Journal of Groundwater Science and Engineering, 10, 322-334. doi: 10.19637/j.cnki.2305-7068.2022.04.002 |
[2] | Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11. doi: 10.19637/j.cnki.2305-7068.2021.01.001 |
[3] | Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29. doi: 10.19637/j.cnki.2305-7068.2020.01.003 |
[4] | SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003 |
[5] | WANG Kui-feng, XU Meng, CHEN Xiao-man, 2017: The comprehensive evaluation on resource environmental bearing capacity of central cities in the Yellow River Delta-A case study on Dongying City, Journal of Groundwater Science and Engineering, 5, 354-363. |
[6] | Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285. |
[7] | Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan, 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13. |
[8] | ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353. |
[9] | SHANG Man-ting, LIU Pei-gui, LEI Chao, LIU Ming-chao, WU Liang, 2017: Effect of climate change on the trends of evaporation of phreatic water from bare soil in Huaibei Plain, China, Journal of Groundwater Science and Engineering, 5, 213-221. |
[10] | Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58. |
[11] | BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52. |
[12] | Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43. |
[13] | SRISUK Kriengsak, NETTASANA Tussanee, 2017: Climate change and groundwater resources in Thailand, Journal of Groundwater Science and Engineering, 5, 67-75. |
[14] | Than Zaw, Maung Maung Than, 2017: Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66. |
[15] | Ramasamy Jayakumar, Eunhee Lee, 2017: Climate change and groundwater conditions in the Mekong Region–A review, Journal of Groundwater Science and Engineering, 5, 14-30. |
[16] | WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156. |
[17] | GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan, 2014: The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39. |
[18] | Yun GAO, 2014: Coastal Case Study-Clarence City Council, Journal of Groundwater Science and Engineering, 2, 21-28. |
[19] | CHEN Qu, 2014: Anticipatory Adaptation Approaches to Climate Change--A Review and Discussion of Southern Australia’s Sustainable Water Management and Its Strategies and Shortcomings, Journal of Groundwater Science and Engineering, 2, 54-61. |
[20] | Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner, 2013: Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59. |
Welcome to Journal of Groundwater Science and Engineering!
Quick Submit