• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 7 Issue 2
Jul.  2019
Turn off MathJax
Article Contents
YAN Xiao-san, QIAN Jia-zhong, MA Lei. 2019: Experimental study on the velocity-dependent dispersion of the solute transport in different porous media. Journal of Groundwater Science and Engineering, 7(2): 106-114.
Citation: YAN Xiao-san, QIAN Jia-zhong, MA Lei. 2019: Experimental study on the velocity-dependent dispersion of the solute transport in different porous media. Journal of Groundwater Science and Engineering, 7(2): 106-114.

Experimental study on the velocity-dependent dispersion of the solute transport in different porous media

  • The hydrodynamic dispersion is an important factor influencing the reactive solute transport in the porous media, and many previous studies assumed that it linearly varied with the average velocity of the groundwater flow. Actually, such linear relationship has been challenged by more and more experimental observations, even in homogeneous media. In this study, we aim to investigate the relationship between hydrodynamics dispersion and the flow velocity in different types of porous media through a laboratory-controlled experiment. The results indicate that (1) the dispersion coefficient should not be a linear function of the flow velocity when the relationship between the flow velocity and the hydraulic gradient can be described by Darcy’s law satisfactorily; (2) Power function works well in describing the dispersion coefficient changing with the flow velocity for different types of porous media, and the power value is between 1.0-2.0 for different particle sizes.
  • 加载中
  • WANG Li-chun, Cardenas M B, et al. 2012. Theory for dynamic longitudinal dispersion in fractures and rivers with Poiseuille flow. Geophysical Research Letters, 39(5):131-138.
    Bear J. 1972. Dynamics of fluid in porous media. New York: The American Elsevier Publishing Company, Inc.
    Sahimi M, Hughes B D, et al. 1986. Dispersion in flow through porous media-I. One-phase flow. Chemical Engineering Science, 41(8):2103- 2122.
    QIAN Jia-zhong, ZHAN Hong-bin, et al. 2015. Numerical simulation and experimental study of bimolecular reactive transport in porous media. Transport in Porous Media, 109(3): 727-746.
    Fried J J, Combarnous M A. 1971. Dispersion in porous media. Advances in Hydroscience, 7: 169-282.
    Koch D L, Brady J F. 1985. Dispersion in fixed beds. Journal of Fluid Mechanics, 154(1): 399-427.
    Pugliese L, Poulsen T G. 2014. Estimating solute dispersion coefficients in porous media at low pore water velocities. Soil Science, 179(4): 175-181.
    Simmons C T, Pierini M L, Hutson J L. 2002. Laboratory investigation of variable-density flow and solute transport in unsaturated- saturated porous media. Transport in Porous Media, 47(2):215-244.
    Arriaza J L, Ghezzehei T A. 2013. Explaining longitudinal hydrodynamic dispersion using variance of pore size distribution. Journal of Porous Media, 16(1):11-19.
    WANG Kang, ZHANG Ren-duo, JIAO Xi-yun. 2007. Characterizing heterogeneity of water flow and solute transport in the porous media using dye tracer. Advances in Water Science, 18(5):662-667.
    Fahs M, Ataie-Ashtiani B, et al. 2016. The Henry problem: New semi-analytical solution for velocity-dependent dispersion. Water Resour-ces Research, 52:7382-7407.
    Dronfield D G, Silliman S E. 1993. Velocity de-pendence of dispersion for transport through a single fracture of variable roughness. Water Resources Research, 29(10):3477-3483.
    Zaheer M, WEN Zhang, et al. 2017. An experi-mental study on solute transport in one-dimensional clay soil columns. Geofluids, DOI:10.1155/2017/6390607.
    Ghesmat K, Azaiez J. 2008. Viscous fingering instability in porous media: Effect of aniso-tropic velocity-dependent dispersion tensors. Transport in Porous Media, 73(3):297-318.
    Eidsath A, Carbonell R G, et al. 1983. Dispersion in pulsed systems-III comparison between theory and experiments for packed beds. Chemical Engineering Science, 38(11):1803- 1816.
    Salama A, Geel P J V. 2008. Flow and solute transport in saturated porous media: 2. Vio-lating the continuum hypothesis. Journal of Porous Media, 11(5):421-441.
    Taylor G. 1953. Dispersion of soluble matter in solvent flowing slowly through a tube. Pro-ceedings of the Royal Society of London, 219(1137):186-203.
    Bijeljic B, Blunt M J. 2007. Pore-scale modeling of transverse dispersion in porous media. Water Resources Research, 43(12):12-11.
    LI Yuan-hui, Gregory S. 1974. Diffusion of ions in sea water and in deep-sea sediments. Geo-chimica et Cosmochimica Acta, 38(5):703-714.
    Graf T, Therrien R. 2005. Variable-density ground?water flow and solute transport in porous media containing nonuniform discrete fractures. Advances in Water Resources, 28(12):1351-1367.
    De Smedt F, Wierenga P J. 1984. Solute transfer through columns of glass beads. Water Resources Research, 20(2):225-232.
    Bond W J. 1986. Velocity-dependent hydrody-namic dispersion during unsteady, unsa-turated soil water flow: Experiments. Water Re?sources Research, 22(13):1881-1889.
    LI Xiao-ping, ZHU Wei, University Hohai. 2014. Effect of distribution of soil pore size on dispersion coefficient in migration process of pollutant. Journal of Water Resources and Water Engineering, 25(2):172-175.
    Connolly M, Johns R T. 2016. Scale-dependent mixing for adverse mobility ratio flows in heterogeneous porous media. Transport in Porous Media, 113(1):29-50.
    Simmons C T, Fenstemaker T R, Sharp J M. 2001. Variable-density groundwater flow and solute transport in heterogeneous porous media: Approaches, resolutions and future challenges. Journal of Contaminant Hydrology, 52(1-4): 245-275.
  • [1] MA Li-sha, HAN Zhan-tao, WANG Yan-yan, 2021: Dispersion performance of nanoparticles in water, Journal of Groundwater Science and Engineering, 9, 37-44.  doi: 10.19637/j.cnki.2305-7068.2021.01.004
    [2] HAO Hong-bo, LV Jie, CHEN Yan-mei, WANG Chuan-zi, HUANG Xiao-rui, 2021: Research advances in non-Darcy flow in low permeability media, Journal of Groundwater Science and Engineering, 9, 83-92.  doi: 10.19637/j.cnki.2305-7068.2021.01.008
    [3] Rasoul Daneshfaraz, Ehsan Aminvash, Reza Esmaeli, Sina Sadeghfam, John Abraham, 2020: Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions, Journal of Groundwater Science and Engineering, 8, 396-406.  doi: 10.19637/j.cnki.2305-7068.2020.04.009
    [4] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [5] ZHU Heng-hua, JIA Chao, XU Yu-liang, YU Ze-min, YU Wei-jiang, 2018: Study on numerical simulation of organic pollutant transport in groundwater northwest of Laixi, Journal of Groundwater Science and Engineering, 6, 293-305.  doi: 10.19637/j.cnki.2305-7068.2018.04.005
    [6] MA Zhi-yuan, XU Yong, ZHAI Mei-jing, WU Min, 2017: Clogging mechanism in the process of reinjection of used geothermal water: A simulation research on Xianyang No.2 reinjection well in a super-deep and porous geothermal reservoir, Journal of Groundwater Science and Engineering, 5, 311-325.
    [7] WANG Yao, HOU Li-sheng, CAI Yun-long, 2017: Scale effects of eroded sediment transport in Wujiang River Basin, Guizhou Province, China, Journal of Groundwater Science and Engineering, 5, 182-192.
    [8] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan, 2017: Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [9] HAO Qi-chen, SHAO Jing-li, CUI Ya-li, ZHANG Qiu-lan, 2016: Development of a new method for efficiently calculating of evaporation from the phreatic aquifer in variably saturated flow modeling, Journal of Groundwater Science and Engineering, 4, 26-34.
    [10] FENG Guan-hong, XU Tian-fu, ZHU Hui-xing, 2016: Dynamics of fluid and heat flow in a CO2-based injection-production geothermal system, Journal of Groundwater Science and Engineering, 4, 377-388.
    [11] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li, 2016: Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [12] ZHOU Xun, WANG Xiao-cui, CAO Qin, LONG Mi, ZHENG Yu-hui, GUO Juan, SHEN Xiao-wei, ZHANG Yu-qi, TA Ming-ming, CUI Xiang-fei, 2016: A discussion of up-flow springs, Journal of Groundwater Science and Engineering, 4, 279-283.
    [13] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [14] , 2014: The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [15] BAI Xi-qing, LIU Yan, 2014: Feasibility Analysis on Resuming Flow of Large Karst Spring in Heilongdong, Journal of Groundwater Science and Engineering, 2, 80-87.
    [16] Jian-ye GUI, Chen-ling ZHANG, Yong-tao ZHANG, Li ZHANG, 2014: Rapid Determination of Polar Herbicides in Soil Samples Using Accelerated Ultrasonic Extraction (AUE) in Combination with Dispersion and In-situ Derivatization, Journal of Groundwater Science and Engineering, 2, 56-62.
    [17] , 2013: Structural Control on Groundwater Distribution and Flow in the South of Ningxia Hui Autonomous Region, China, Journal of Groundwater Science and Engineering, 1, 1-8.
    [18] Wang Ping, Han Zhantao, Li Yasong, Chen Kang, Lv Xiaoli, Jian Ming, 2013: The Role of Groundwater Leakage through Deep Wells for the Deformation of Groundwater Flow: a Case Study in Cangzhou Area, Journal of Groundwater Science and Engineering, 1, 80-87.
    [19] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (217) PDF downloads(159) Cited by()
    Proportional views

    Submission system is out of service now, please submit to our email: gwse-iheg@188.com, hope your understanding!



    DownLoad:  Full-Size Img  PowerPoint