• ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 8 Issue 2
Jun.  2020
Turn off MathJax
Article Contents
Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA. Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco[J]. Journal of Groundwater Science and Engineering, 2020, 8(2): 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006
Citation: Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA. Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco[J]. Journal of Groundwater Science and Engineering, 2020, 8(2): 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006

Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco

doi: 10.19637/j.cnki.2305-7068.2020.02.006

Abdelhakim LAHJOUJ

  • The objective of this study is to evaluate the nitrate contamination in the plioquaternary aquifer of Sais Basin based on a statistical approach. A total of 98 samples were collected in the cultivated area during the spring and autumn period of 2018. The results show that 55% and 57% of the samples in spring and autumn respectively exceed the threshold fixed by WHO (50 mg/L). However, nitrate concentrations do not show seasonal and spatial variation (p>0.05). The results of the correlation matrix, principal component analysis (PCA), and hierarchical cluster analysis (HCA) suggest that nitrate pollution is related to anthropogenic source. Moreover, multiple linear regression results show that NO3 is more positively explained in the spring period by Ca and SO4 and negatively explained by pH and HCO3. Regarding the autumn period, nitrate pollution is positively explained by Ca and negatively by pH. This study proposes a useful statistical platform for assessing nitrate pollution in groundwater.
  • 加载中
  • [1]
    Japan. Environmental Earth Sciences, 75(3):234. doi:10.1007/s12665-015-4971-9.
    El Idrisi RM. 1992. Soil differentiation in the Meknes Plain. University of Paris VI.
    Ahada CPS, Suthar S. 2018. Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environmental Science and Pollution Research. 25(25):25336-25347. doi:10.1007/s11356-018-2581-2.
    local flow systems in semi-arid regions: San Luis Potosi, Mexico. In proceedings of Internacional Congress, Zacatecas, Mexico: 85-104.
    Jalali M. 2010. Nitrate pollution of groundwater in Toyserkan, western Iran. Environmental Earth Sciences, 62(5): 907-913. doi:10.1007/s12665-010-0576-5.
    Helsel D, Hirsch R. 2002. Statistical methods in water resources, US Geological Survey, Reston, VA. doi.org/10.3133/twri04A3.
    Cardona A, Carrillo-Rivera JJ, Castro-Larragoitia GJ, et al. 2008. Combined use of indicators to evaluate waste water contamination to
    Ki MG, Koh DC, Yoon H, et al. 2015. Temporal variability of nitrate concentration in groundwater affected by intensive agricultural activities in a rural area of Hongseong, South Korea. Environmental Earth Sciences, 74(7): 6147-6161. doi:10.1007/s12665-015-4637-7.
    Belhassan K, Hessane MA, Essahlaoui A. 2010. Surface water-groundwater interactions in the Wadi Mikkes Basin, Morocco. Hydrological Sciences Journal, 55(8): 1371-1384. doi:10.1080/02626667.2010.528763.
    Benaabidate L, Cholli M. 2011. Groundwater stress and vulnerability to pollution of Saiss Basin shallow aquifer, Morocco. Fifteenth
    Costa JL, Massone H, Martinez D, et al. 2002. Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone. Agricultural Water Management, 57(1): 33-47. doi:10.1016/s0378-3774(02)00036-7.
    Kihumba AM, Ndembo Longo J, Vanclooster M. 2016. Modeling nitrate pollution pressure using a multivariate statistical approach: The case of Kinshasa groundwater body, Democratic Republic of Congo. Hydrogeology Journal, 24(2): 425-437. doi:10.1007/s10040-015-1337-z.
    Sahele M, Zewdie M, Narayanan K. 2018. Assessment of groundwater nitrate level and source of pollution in Dire Dawa, Eastern Ethiopia. Resources and Environment, 8(4): 185-197. doi:10.5923/j.re.20180804.01.
    Nolan BT. 2001. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Ground Water, 39(2): 290-299. doi:10.1111/j.1745-6584.2001.tb02311.x.
    Environment and Sustainable Development,7(1):298-308.
    Environmental Geology, 25(3): 197-204.doi:10.1007/bf00768549.
    Kazemi GA, Lehr JH, Perrochet P. 2006. Groundwater age. Wiley-Interscience.
    Isa NM, Aris AZ, Sulaiman WNA. 2012. Extent of severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer. Science of the Total Environment, 438: 414-425. doi:10.1016/j.scitotenv.2012.08.069.
    International Water Technology Conference, Alexandria, Egypt.
    Debernardi L, Dad L, Lasagna M. 2008. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environmental Geology, 55(3): 539-558. doi:10.1007/s00254-007-1006-1.
    Miche H, Saracco G, Mayer A, et al. 2017. Hadrochemical constraints between the Karst Tabular Middle Atlas Causses and the Sais Basin (Morocco): Implication of groundwater circulation. Hydrogeology Journal, 26(1):71-87. doi:10.1007/s10040-017-1675-0.
    Pawar NJ, Shaikh IJ. 1999. Nitrate pollution of ground waters from shallow basaltic aquifers, Deccan Trap Hydrologic Province, India.
    Pauwels H, Lachassagne P, Bordenave P, et al.2001. Temporal variability of nitrate concentration in a schist aquifer and transfer to surface waters. Applied Geochemistry, 16(6):583-596. doi:10.1016/s0883-2927(00)00062-7.
    Amraoui F. 2005. Contribution to the knowledge of the karstic aquifers of the lias of the Saiss Plain and the Tabular Middle Atlas Causse (Morocco). Ain Chock: University of Hassan II, Faculty of Sciences.
    Essahlaoui A. 2000. Contribution to the identification of aquifer formations in the Meknes-Fez Basin (Morocco), Geoelectric prospecting, hydrogeological study and water resources inventory. Rabat: University of Mohammed VI.
    Puckett LJ, Tesoriero AJ, Dubrovsky NM. 2011. Nitrogen contamination of surficial aquifers: A growing legacy. Environmental Science and Technology, 45(3): 839-844. doi:10.1021/
    Spalding RF, Exner ME. 1993. Occurrence of nitrate in groundwater. Journal of Environmental Quality, 22(3): 392-402. doi:10.2134/jeq1993.00472425002200030002x.
    Pati S, Dash MK, Mukherjee CK, et al. 2014. Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India. Environmental Monitoring and Assessment, 186(10): 6385-6402. doi:10.1007/s10661-014-3862-y.
    Mengis M, Schiff SL, Harris M, et al. 1999. Multiple geochemical and isotopic approaches for assessing groundwater NO3- elimination
    Hyun-Su K, Park S. 2016. Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea. Water, 8(8): 345. doi:10.3390/w8080345.
    combination with an amine-rich diet. Environmental Health Perspectives, 106(8): 459-463. https://doi.org/10.1289/ehp.106-1533225.
    Nakagawa K, Amano H, Asakura H, et al. 2016. Spatial trends of nitrate pollution and groundwater chemistry in Shimabara, Nagasaki,
    Tabyaoui F, Sahbi H, Elouazzani A, et al. 2004. Status of nitrate pollution in groundwater of the Plio-Quaternary aquifer of the Meknes plain (Morocco). Geomaghreb, 2: 63-75.
    in a riparian zone. Ground Water, 37(3): 448-457. doi:10.1111/j.1745-6584.1999.tb01124.x.
    Velo A, Pérez FF, Tanhua T, et al. 2013. Total alkalinity estimation using MLR and neural network techniques. Journal of Marine Systems, 111-112: 11-18. doi.org/10.1016/j.jmarsys.2012.09.002.
    Murglet D, Tick GR. 2013. Understanding the sources and fate of nitrate in a highly developed aquifer system. Journal of Contaminant Hydrology, 155: 69-81. doi:10.1016/j.jconhyd.2013.09.004.
    Babiker IS, Mohamed MAA, Terao H, et al. 2004. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International,29(8): 1009-1017. doi:10.1016/s0160-4120
    Sadkaoui N, Boukrim S, Bourak A, et al. 2013. Groundwater pollution of Sais Basin (Morocco), vulnerability mapping by DRASTIC,GOD and PRK methods, involving geographic information system (GIS). Present
    Vermeer ITM, Pachen DMFA, Dallinga JW, et al. 1998. Volatile N-nitrosamine formation after intake of nitrate at the ADI level in
  • [1] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine. Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria. Journal of Groundwater Science and Engineering, 2020, 8(2): 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [2] Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas. Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network. Journal of Groundwater Science and Engineering, 2020, 8(1): 87-96.  doi: 10.19637/j.cnki.2305-7068.2020.01.009
    [3] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe. Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran). Journal of Groundwater Science and Engineering, 2020, 8(3): 230-243.  doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [4] ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min. Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones. Journal of Groundwater Science and Engineering, 2019, 7(2): 173-181.
    [5] LI Yang, KANG Feng-Xin, ZOU An-de. Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit. Journal of Groundwater Science and Engineering, 2019, 7(2): 145-154.
    [6] LI Xiao-hang, WANG Rui, LI Jian-feng. Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain. Journal of Groundwater Science and Engineering, 2018, 6(3): 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [7] LI Bo, LI Xue-mei. Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area. Journal of Groundwater Science and Engineering, 2018, 6(4): 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [8] ZHOU Xun. Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China. Journal of Groundwater Science and Engineering, 2017, 5(4): 343-353.
    [9] Pezhman ROUDGARMI, Ebrahim FARAHANI. Investigation of groundwater quantitative change, Tehran Province, Iran. Journal of Groundwater Science and Engineering, 2017, 5(3): 278-285.
    [10] Khongsab Somphone, OunakoneKone Xayviliya. Climate change and groundwater resources in Lao PDR. Journal of Groundwater Science and Engineering, 2017, 5(1): 53-58.
    [11] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng. Climate change and groundwater resources in China. Journal of Groundwater Science and Engineering, 2017, 5(1): 44-52.
    [12] Chamroeun SOK, Sokuntheara CHOUP. Climate change and groundwater resources in Cambodia. Journal of Groundwater Science and Engineering, 2017, 5(1): 31-43.
    [13] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan. Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources. Journal of Groundwater Science and Engineering, 2017, 5(1): 1-13.
    [14] ZHAI Yuan-zheng, JIANG Shi-jie, TENG Yan-guo, WANG Jin-sheng, GU Hong-biao, XIE Liang, YIN Zhi-hua. Thirty years (1984-2014) of groundwater science teaching and research in China: A dissertation-based bibliometric survey. Journal of Groundwater Science and Engineering, 2015, 3(3): 222-237.
    [15] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei. Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China. Journal of Groundwater Science and Engineering, 2015, 3(2): 136-146.
    [16] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming. Characteristics-based classification research on typical petroleum contaminants of groundwater. Journal of Groundwater Science and Engineering, 2014, 2(4): 41-47.
    [17] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU. Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III. Journal of Groundwater Science and Engineering, 2014, 2(1): 78-85.
    [18] Jingli Shao, Yali Cui, Yunzhang Zhao. A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River. Journal of Groundwater Science and Engineering, 2013, 1(1): 46-53.
    [19] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen. Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend. Journal of Groundwater Science and Engineering, 2013, 1(1): 1-10.
    [20] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu. Urban Waste Disposal and Its Impact on Groundwater Pollution in China. Journal of Groundwater Science and Engineering, 2013, 1(2): 88-95.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (207) PDF downloads(85) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint