Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer
-
Abstract: Geoelectric and hydrochemical approaches are employed to delineate the ground-water potential zones in District Okara, a part of Bari Doab, Punjab, Pakistan. Sixty-seven VES surveys are conducted with the Electrical Resistivity Meter. The resultant resistivity verses depth model for each site is estimated using computer-based software IX1D. Aquifer thickness maps and interpreted resistivity maps were generated from interpreted VES results. Dar-Zarrouk parameters, transverse resistance (TR), longitudinal conductance (SL) and anisotropy (λ) were also calculated from resistivity data to delineate the potential zones of aquifer. 70% of SL value is ≤3S, 30% of SL value is > 3S. According to SL and TR values, the whole area is divided into three potential zones, high, medium and low potential zones. The spatial distribution maps show that north, south and central parts of study area are marked as good potential aquifer zones. Longitudinal conductance values are further utilized to determine aquifer protective capacity of area. The whole area is characterized by moderate to good and up to some extent very good aquifer protective area on the basis of SL values. The groundwater samples from sixty-seven installed tube wells are collected for hydro-chemical analysis. The electrical conductivity values are determined. Correlation is then developed between the EC (μS/cm) of groundwater samples vs. interpreted aquifer resistivity showing R2 value 0.90.
-
Key words:
- Aquifer /
- Groundwater potential zone /
- Longitudinal conductance /
- VES
-
Table 1. Summary of interpreted results of 67 VES using IX1D software along with Dar-Zarrouk parameters (TR= Transverse resistance, SL = Longitudinal conductance, λ = Coefficient of anisotropy)
VES No. Latitude Longitude Interpreted resistivity (Ω·m) Layer thickness (m) Curve type Groundwater parameters (DZ parameters) Aquifer total thickness - - ρ1 ρ2 ρ3 ρ4 h1 h2 h3 - TR(Ω·m2) Λ SL Siemens H(m) 1 30.91039 73.59371 27 62 4 6 3 12 39 KH 981 1.02 10 54 2 30.79600 73.39500 19 58 2 3 16 K 985 1.83 0.43 19 3 30.67300 73.39800 23 51 7 2 3 17 57 KQ 1 335 1.05 8.61 77 4 30.87800 73.42500 39 71 10 3.35 11 K 912 1.39 0.24 14.35 5 30.71900 73.42200 29 41 14 82 4 17 75 KH 1 863 1.01 5.91 96 6 30.75737 73.37778 20 39 14 3 19 K 801 1.03 0.64 22 7 30.85860 73.57402 36 53 16 11 1.33 11.5 49 KQ 1 441 1.09 3.32 61.83 8 30.73818 73.47733 34 165 19 4 2 6.5 24 KQ 1 597 1.03 1.36 32.5 9 30.79799 73.44399 52 226 27 157 2 17 89 QH 6 349 1.12 3.41 108 10 30.55700 73.35600 54 45 116 17 2 7 26 HK 3 439 1.12 0.42 35 11 30.82042 73.35177 56 35 24 1 12 K 476 1.38 0.36 13 12 30.69832 73.52022 56 56 38 1 1 10 92 KQ 4 112 1.36 2.62 103 13 30.83214 73.51469 62 286 135 44 2 10.5 34 KQ 7 717 1.07 0.32 46.5 14 31.08800 73.50800 65 10 47 8 14.7 H 667 1.01 1.59 22.7 15 31.01600 73.40800 72 52 23 8 4 16.5 62 KQ 2 572 1.11 3.07 82.5 16 30.99367 73.48354 70 93 11 5 59 K 5 837 1.00 0.71 95 17 31.09400 73.59600 64 94 13 7 53 K 5 430 1.06 0.67 70 18 30.95701 73.56341 34 10 92 6 48 H 684 1.17 4.98 56 19 30.92900 73.46239 36 34 83 8 63 A 2 430 1.09 2.08 84 20 31.06400 73.46300 39 34 78 12 8 40 52 KQ 5 728 1.00 2.05 100 21 31.00927 73.60100 42 22 10 5 56 Q 1 442 1.01 2.66 88 22 30.92000 73.32900 61 37 99 7 69 A 2 980 1.08 1.98 96 23 30.92500 73.41000 72 83 30 9 6 52 42 H 6 008 1.00 2.11 128 24 30.92200 73.25900 70 10 38 2 33 49 KQ 2 332 1.08 4.62 87 25 30.75381 73.76415 72 67 29 7 4 51 49 HK 5 126 1.01 2.51 108 26 30.82200 73.29800 70 82 52 5 59 43 K 7 424 1.01 1.62 108 27 30.53100 73.74684 55 24 16 6 20 Q 810 1.12 9.94 26 28 30.41010 73.75495 13 79 13 19 3 8 157 KH 2 712 1.03 10.41 168 29 30.67700 74.04300 8 23 80 5 57 K 1 351 1.04 3.1 85 30 30.62500 73.60600 9 65 11 9 76 K 5 021 1.09 2.17 85 31 30.66464 73.46537 12 89 13 19 3 11 33 KH 1 444 1.02 2.91 47 32 30.35500 73.67000 12 84 44 11 6 55 23 HK 5 704 1.06 1.68 84 33 30.45100 73.64100 47 9 6 8 54 Q 862 1.62 6.17 92 34 30.69400 73.97600 6 89 5 81 1 8.7 58 KH 1 070 1.09 9.86 67.7 35 30.44335 73.71715 14 81 24 12 22 K 1 950 1.03 1.13 34 36 30.38452 73.85146 30 81 8 25 3 12 109 KH 1 934 1.23 9.1 124 37 30.54589 73.52160 20 36 82 138 1 18 36 AK 3 620 1.32 0.99 55 38 30.47500 73.91500 59 49 15 11 36 Q 2 413 1.16 0.92 57 39 30.58921 73.83889 10 11 29 1 10 A 120 1.13 10.01 11 40 30.53500 73.62700 37 52 26 12 2 13 103 KH 3 428 1.58 4.27 118 41 30.60987 73.94022 41 19 30 5.5 56 H 1 290 1.38 9.9 66.5 42 30.79400 73.89500 47 64 27 82 1 23 78 KQ 4 171 1.32 1.01 102 43 30.48000 73.65500 47 32 29 3 39 Q 1 389 1.08 1.28 42 44 30.81416 73.82225 22 103 28 87 2 9 90 KH 3 491 1.00 3.39 101 45 30.73300 73.81500 22 127 5 3 46 Q 5 908 1.00 0.5 54 46 30.54270 74.06452 35 108 14 2 48 Q 5 254 1.04 0.5 60 47 30.68400 73.87300 17 35 78 13 2 10 37 AK 3 270 1.02 0.88 49 48 30.53541 73.93927 472 271 281 3 24 H 7 920 1.15 0.09 27 49 30.57300 73.71000 10 40 7 2 35 K 1 420 1.00 1.08 37 50 30.57183 73.97724 7 36 23 5 28 K 1 043 1.05 1.49 33 51 30.65709 73.70189 44 147 247 36 1 20 28 AK 9 900 1.10 0.27 49 52 30.73135 73.69253 45 16 7 6 70 Q 1 390 1.02 4.51 96 53 30.36300 73.63600 39 52 24 6 42 K 2 418 1.09 0.96 48 54 30.63550 73.78595 28 68 24 5 21 K 1 568 1.14 0.49 26 55 30.50100 73.85200 27 71 4 14 59 K 4 567 1.02 1.35 93 56 30.41499 73.80934 14 45 26 119 8 23 99 KQ 3 721 1.06 4.89 130 57 30.93588 73.66342 15 9 13 4.5 68 H 680 1.20 7.86 92.5 58 30.76601 73.53270 17 11 28 4 62 H 750 1.06 5.87 66 59 30.85560 73.77983 15 8 14 7 38 H 409 1.03 5.22 45 60 30.87400 73.68900 68 65 4 6 39 Q 2 943 1.00 0.69 48 61 30.79870 73.59703 53 90 5 9 12 K 1 557 1.06 0.30 21 62 30.76900 73.63600 40 106 8 10 1 10 37 KH 1 396 1.06 4.74 48 63 30.90210 73.76359 59 99 4 5 28 A 3 067 1.04 0.37 33 64 30.70100 73.58000 45 63 3 3 31 K 2 088 1.01 0.56 34 65 30.84065 73.61586 65 65 15 2 29 Q 2 015 1.01 0.48 31 66 30.80100 73.68000 5 3 7 3 18 H 569 1.03 6.6 21 67 30.88200 73.63600 48 34 22 4 41 K 1 586 1.00 1.29 45 Table 2. Classification of aquifer protective capacity w.r.t. to SL values as reported by (Oladapo and Akintorinwa, 2007)
Sr. No. Longitudinal conductance (SL) (Siemens) Aquifer protective capacity 1 > 10 Excellent 2 5~10 Very good 3 0.7~4.9 Good 4 0.2~0.69 Moderate 5 0.1~0.19 Weak 6 < 0.1 Poor -
Aamer M, Sabir MF. 2014. Irrigation water quality based on hydro chemical analysis, district Rahim Yar Khan, Pakistan. Journal of Resources Development and Management, 4: 52-56. Abbas F, Ahmad A, Safeeq M, et al. 2014. Changes in precipitation extremes over arid to semiarid and subhumid Punjab, Pakistan. Theoretical and Applied Climatology, 116(3-4): 671-680. doi: 10.1007/s00704-013-0988-8 Adagunodo TA, Akinloye MK, Sunmonu LA, et al. 2018. Groundwater exploration in Aaba residential area of Akure, Nigeria. Frontiers in Earth Science, 6: 66. https://doi.org/10.3389/feart.2018.00066 doi: 10.3389/feart.2018.00066 Adeniji A, Obiora D, Omonona O, et al. 2013. Geoelectrical evaluation of groundwater po-tentials of Bwari basement area, Central Nigeria. International Journal of Physical Sciences, 8(25): 1350-1361. Akinwumiju AS, Olrunfemi MO, Afolabi O. 2016. GIS-based integrated groundwater poten-tial assessment of Osun Drainage Basin, South-western Nigeria. Ife Journal of Science, 18(1): 147-168. https://www.researchgate.net/publication/301804742_GIS-BASED_INTEGRATED_GROUNDWATER_POTENTIAL_ASSESSMENT_OF_OSUN_DRAINAGE_BASIN_SOUTHWESTERN_NIGERIA_1_2_2 Alam N, Olsthoorn TO. 2014. Punjab scavenger wells for sustainable additional groundwater irrigation. Agricultural Water Management, 138(31): 55-67. Basharat M, Tariq A. 2013. Long-term groundwater quality and saline intrusion assessment in an irrigated environment: A case study of the aquifer under the lbdc irrigation system. Irrigation and Drainage, 62(4): 510-523. DOI: 10.1002/ird.1738 Basharat M, Sultan S, Malik A. 2015. Groundwater management in Indus Plain and integrated water resources management approach. International Waterlogging and Salinity Res-earch Institute (IWASRI): Lahore, Pakistan. Basharat M, Tariq A-U-R. 2014. Command-scale integrated water management in response to spatial climate variability in Lower Bari Doab Canal irrigation system. Water Policy, 16(2): 374-396. https://doi.org/10.2166/wp.2013.221 doi: 10.2166/wp.2013.221 Bureau of Statistics, Government of Punjab. 2014. Statistics division. Lahore. 2014-15 Charoenpong S, Suwanprasit C, Thongchumnum P. 2012. Impacts of interpolation techniques on groundwater potential modeling using GIS in Phuket Province, Thailand. Andaman Environment and Natural Disaster Research Center. Daraz GK, Wahedullah, Bhatti AS. 2013. Ground-water investigation by using resistivity survey in Peshawar, Pakistan. Journal of Resources Development and Management, 2: 9-20. Dor N, Syafalni S, Abustan I, et al. 2011. Verifica-tion of surface groundwater connec-tivity in an irrigation canal using geophysical, water balance and stable isotope approaches. Water Resource Management, 5: 2837. El-Kadi AI. 2017. Groundwater models for resources analysis and management. CRC Press. Elliott J, Deryng D, Müller C, et al. 2014. Con-straints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9): 3239-3244. www.pnas.org/cgi/doi/10.1073/pnas.1222474110 doi: 10.1073/pnas.1222474110 GOP. 2017. Agriculture statistics of Pakistan 2017-18. Ministry of National Food Security and Research Islamabad. Hasan M, Shang Y, Akhter G, et al. 2018. Geo-physical assessment of groundwater potential: A case study from Mian Channu Area, Paki-stan. Ground Water, 56(5): 783-796. DOI: 10.1111/gwat.12617 Hasan M, Shang Y, Akhter G, et al. 2017. Geo-physical investigation of fresh-saline water interface: A case study from South Punjab, Pakistan. Ground Water, 55(6): 841-856. DOI: 10.1111/gwat.12527. Imran M, Ali A, Ashfaq M, et al. 2018. Impact of climate smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability. 10:2101. doi: 10.3390/su10062101 Kearey P, Brooks M, Hill I. 2013. An introduction to geophysical exploration. John Wiley & Sons. Khan AD, Iqbal N, Ashraf M, et al. 2016. Ground-water investigation and mapping in Upper Indus Plain. Pakistan Council of Research in Water Resources (PCRWR), Islamabad: 72. Koefoed O. 1979. Groundwater principles, 1, Resistivity sounding measurements. Elsevier Scientific Publication co, Amsterdam-Oxford-New York. Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4): 529-556. DOI: 10.1190/1.1437342 Manu E, Agyekum WA, Duah A, et al. 2019. Application of vertical electrical sounding for groundwater exploration of cape coast municipality in the central region of Ghana. Arabian Journal of Geosciences, 12(6): 196. DOI: 10.1007/s12517-019-4374-4 Mehmood Q, Mehmood W, Awais M, et al. 2020. Optimizing groundwater quality exploration for irrigation water wells using geophysical technique in semi-arid irrigated area of Pakistan. Groundwater for Sustainable Development: 100397. https://doi.org/10.1016/j.gsd.2020.100397 Michael F, Reilly TE, Michael GR, et al. 2003. Assessing groundwater vulnerability to contamination: Providing scientifically defensible information for decision makers. US Geological Survey Circular: 1224. Mohamaden M, El-Sayed H, Hamouda A. 2016. Combined application of electrical resistivity and GIS for subsurface mapping and groundwater exploration at El-Themed, Southeast Sinai, Egypt. The Egyptian Journal of Aquatic Research, 42(4): 417-426. DOI: 10.1016/j.ejar.2016.10.007 Mujtaba G, Ahmed Z, Ophori D. 2007. Mana-gement of groundwater resources in Punjab, Pakistan, using a groundwater flow model. Journal of Environmental Hydrology, 15: 1-14. https://www.researchgate.net/publication/295407853_Management_of_groundwater_resources_in_Punjab_Pakistan_using_a_groundwater_flow_model Nas B, Berktay A. 2010. Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment, 160(1-4): 215-227. doi: 10.1007/s10661-008-0689-4 Nwachukwu S, Bello R, Balogun A. 2019. Evaluation of groundwater potentials of Orogun, South-south part of Nigeria using electrical resistivity method. Applied Water Science, 9(8): 184. DOI: 10.1007/s13201-019-1072-z Obianwu VI, Atan O, Okiwelu O. 2015. Deter-mination of aquifer position using electric geophysical method. Applied Physics Re-search, 7(2): 83. Oladapo MI, Akintorinwa OJ. 2007. Hydro-geophysical study of Ogbese south western Nigeria. Global Journal of Pure and Applied Sciences, 13(1): 55-61. DOI: 10.4314/gjpas.v13i1.16669 Punthakey J, Khan M, Ahmad RN, et al. 2016. Optimising canal and groundwater management to assist water user associations in maximizing crop production and managing salinisation in Australia and Pakistan. Shakir AS, Mughai H, Khan NM, et al. 2016. Impact of canal water shortages on ground-water in the Lower Bari Doab Canal System in Pakistan. Pakistan Journal Engineering & Application Science, 9: 87-97. Shakoor A. 2015. Hydrogeologic assessment of spatio-temporal variation in groundwater quality and its impact on agricultural produ-ctivity, University of Agriculture, Faisalabad. Sikandar P, Christen E, Stein TM. 2017. Vertical electrical sounding (ves) for salinity ass-essment of water-bearing formations. Irr-igation and Drainage, 66(2): 252-262. DOI: 10.1002/ird.2094 Singh KP. 2005. Nonlinear estimation of aquifer parameters from surficial resistivity measure-ments. Hydrology and Earth System Sciences Discussions, 2(3): 917-938. DOI: 10.5194/hessd-2-917-2005. Terry N, Day-Lewis F, Robinson JL, et al. 2017. Scenario evaluator for electrical resistivity survey pre-modeling tool. Groundwater, 55(6): 885-890. https://doi.org/10.1111/gwat.12522 doi: 10.1111/gwat.12522 WAPDA. 1980. Hydrological data of Bari Doab, basic data release. Directorate General of Hydrogeology, Lahore. WAPDA. 1981. Atlas-Soil salinity survey of ir-rigated areas of Indus basin 41 million acres. Survey and Research Organization, Planning Division, Lahore, WAPDA. Watto MA, Mugera AW. 2016. Groundwater depletion in the Indus plains of Pakistan: Im-peratives, repercussions and management issues. International Journal of River Basin Management, 14(4): 447-458. https://doi.org/10.1080/15715124.2016.1204154. doi: 10.1080/15715124.2016.1204154 Yeboah-Forson A, Whitman D. 2013. Electrical resistivity characterization of anisotropy in the Biscayne aquifer. Ground Water, 52: 728-736. DOI: 10.1111/gwat.12107