• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer

Qaisar Mehmood Muhammad Arshad Muhammad Rizwan Shanawar Hamid Waqas Mehmood Muhammad Ansir Muneer Muhammad Irfan Lubna Anjum

Mehmood Qaisar, Arshad Muhammad, Rizwan Muhammad, et al. 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer. Journal of Groundwater Science and Engineering, 8(4): 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007
Citation: Mehmood Qaisar, Arshad Muhammad, Rizwan Muhammad, et al. 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer. Journal of Groundwater Science and Engineering, 8(4): 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007

doi: 10.19637/j.cnki.2305-7068.2020.04.007

Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Study area map and location of VES points

    Figure  2.  Hypothetical current and potential lines and position of current and potential electrodes (Schlumberger electrode configuration)

    Figure  3.  Verification of VES results by test drilling

    Figure  4.  Spatial distribution map of interpreted resistivity of layers1, 2, 3, and 4 respectively

    Figure  5.  Relation between aquifer interpreted resistivity and groundwater EC of installed tube wells

    Figure  6.  Spatial distribution maps of thickness of layer 1, layer 2, and layer 3

    Figure  7.  Spatial distribution map transverse resistance and longitudinal conductance

    Figure  8.  Spatial distribution map of coefficient of anisotropy

    Table  1.   Summary of interpreted results of 67 VES using IX1D software along with Dar-Zarrouk parameters (TR= Transverse resistance, SL = Longitudinal conductance, λ = Coefficient of anisotropy)

    VES No. Latitude Longitude Interpreted resistivity (Ω·m) Layer thickness (m) Curve type Groundwater parameters (DZ parameters) Aquifer total thickness
    - - ρ1 ρ2 ρ3 ρ4 h1 h2 h3 - TR(Ω·m2) Λ SL Siemens H(m)
    1 30.91039 73.59371 27 62 4 6 3 12 39 KH 981 1.02 10 54
    2 30.79600 73.39500 19 58 2 3 16 K 985 1.83 0.43 19
    3 30.67300 73.39800 23 51 7 2 3 17 57 KQ 1 335 1.05 8.61 77
    4 30.87800 73.42500 39 71 10 3.35 11 K 912 1.39 0.24 14.35
    5 30.71900 73.42200 29 41 14 82 4 17 75 KH 1 863 1.01 5.91 96
    6 30.75737 73.37778 20 39 14 3 19 K 801 1.03 0.64 22
    7 30.85860 73.57402 36 53 16 11 1.33 11.5 49 KQ 1 441 1.09 3.32 61.83
    8 30.73818 73.47733 34 165 19 4 2 6.5 24 KQ 1 597 1.03 1.36 32.5
    9 30.79799 73.44399 52 226 27 157 2 17 89 QH 6 349 1.12 3.41 108
    10 30.55700 73.35600 54 45 116 17 2 7 26 HK 3 439 1.12 0.42 35
    11 30.82042 73.35177 56 35 24 1 12 K 476 1.38 0.36 13
    12 30.69832 73.52022 56 56 38 1 1 10 92 KQ 4 112 1.36 2.62 103
    13 30.83214 73.51469 62 286 135 44 2 10.5 34 KQ 7 717 1.07 0.32 46.5
    14 31.08800 73.50800 65 10 47 8 14.7 H 667 1.01 1.59 22.7
    15 31.01600 73.40800 72 52 23 8 4 16.5 62 KQ 2 572 1.11 3.07 82.5
    16 30.99367 73.48354 70 93 11 5 59 K 5 837 1.00 0.71 95
    17 31.09400 73.59600 64 94 13 7 53 K 5 430 1.06 0.67 70
    18 30.95701 73.56341 34 10 92 6 48 H 684 1.17 4.98 56
    19 30.92900 73.46239 36 34 83 8 63 A 2 430 1.09 2.08 84
    20 31.06400 73.46300 39 34 78 12 8 40 52 KQ 5 728 1.00 2.05 100
    21 31.00927 73.60100 42 22 10 5 56 Q 1 442 1.01 2.66 88
    22 30.92000 73.32900 61 37 99 7 69 A 2 980 1.08 1.98 96
    23 30.92500 73.41000 72 83 30 9 6 52 42 H 6 008 1.00 2.11 128
    24 30.92200 73.25900 70 10 38 2 33 49 KQ 2 332 1.08 4.62 87
    25 30.75381 73.76415 72 67 29 7 4 51 49 HK 5 126 1.01 2.51 108
    26 30.82200 73.29800 70 82 52 5 59 43 K 7 424 1.01 1.62 108
    27 30.53100 73.74684 55 24 16 6 20 Q 810 1.12 9.94 26
    28 30.41010 73.75495 13 79 13 19 3 8 157 KH 2 712 1.03 10.41 168
    29 30.67700 74.04300 8 23 80 5 57 K 1 351 1.04 3.1 85
    30 30.62500 73.60600 9 65 11 9 76 K 5 021 1.09 2.17 85
    31 30.66464 73.46537 12 89 13 19 3 11 33 KH 1 444 1.02 2.91 47
    32 30.35500 73.67000 12 84 44 11 6 55 23 HK 5 704 1.06 1.68 84
    33 30.45100 73.64100 47 9 6 8 54 Q 862 1.62 6.17 92
    34 30.69400 73.97600 6 89 5 81 1 8.7 58 KH 1 070 1.09 9.86 67.7
    35 30.44335 73.71715 14 81 24 12 22 K 1 950 1.03 1.13 34
    36 30.38452 73.85146 30 81 8 25 3 12 109 KH 1 934 1.23 9.1 124
    37 30.54589 73.52160 20 36 82 138 1 18 36 AK 3 620 1.32 0.99 55
    38 30.47500 73.91500 59 49 15 11 36 Q 2 413 1.16 0.92 57
    39 30.58921 73.83889 10 11 29 1 10 A 120 1.13 10.01 11
    40 30.53500 73.62700 37 52 26 12 2 13 103 KH 3 428 1.58 4.27 118
    41 30.60987 73.94022 41 19 30 5.5 56 H 1 290 1.38 9.9 66.5
    42 30.79400 73.89500 47 64 27 82 1 23 78 KQ 4 171 1.32 1.01 102
    43 30.48000 73.65500 47 32 29 3 39 Q 1 389 1.08 1.28 42
    44 30.81416 73.82225 22 103 28 87 2 9 90 KH 3 491 1.00 3.39 101
    45 30.73300 73.81500 22 127 5 3 46 Q 5 908 1.00 0.5 54
    46 30.54270 74.06452 35 108 14 2 48 Q 5 254 1.04 0.5 60
    47 30.68400 73.87300 17 35 78 13 2 10 37 AK 3 270 1.02 0.88 49
    48 30.53541 73.93927 472 271 281 3 24 H 7 920 1.15 0.09 27
    49 30.57300 73.71000 10 40 7 2 35 K 1 420 1.00 1.08 37
    50 30.57183 73.97724 7 36 23 5 28 K 1 043 1.05 1.49 33
    51 30.65709 73.70189 44 147 247 36 1 20 28 AK 9 900 1.10 0.27 49
    52 30.73135 73.69253 45 16 7 6 70 Q 1 390 1.02 4.51 96
    53 30.36300 73.63600 39 52 24 6 42 K 2 418 1.09 0.96 48
    54 30.63550 73.78595 28 68 24 5 21 K 1 568 1.14 0.49 26
    55 30.50100 73.85200 27 71 4 14 59 K 4 567 1.02 1.35 93
    56 30.41499 73.80934 14 45 26 119 8 23 99 KQ 3 721 1.06 4.89 130
    57 30.93588 73.66342 15 9 13 4.5 68 H 680 1.20 7.86 92.5
    58 30.76601 73.53270 17 11 28 4 62 H 750 1.06 5.87 66
    59 30.85560 73.77983 15 8 14 7 38 H 409 1.03 5.22 45
    60 30.87400 73.68900 68 65 4 6 39 Q 2 943 1.00 0.69 48
    61 30.79870 73.59703 53 90 5 9 12 K 1 557 1.06 0.30 21
    62 30.76900 73.63600 40 106 8 10 1 10 37 KH 1 396 1.06 4.74 48
    63 30.90210 73.76359 59 99 4 5 28 A 3 067 1.04 0.37 33
    64 30.70100 73.58000 45 63 3 3 31 K 2 088 1.01 0.56 34
    65 30.84065 73.61586 65 65 15 2 29 Q 2 015 1.01 0.48 31
    66 30.80100 73.68000 5 3 7 3 18 H 569 1.03 6.6 21
    67 30.88200 73.63600 48 34 22 4 41 K 1 586 1.00 1.29 45
    下载: 导出CSV

    Table  2.   Classification of aquifer protective capacity w.r.t. to SL values as reported by (Oladapo and Akintorinwa, 2007)

    Sr. No. Longitudinal conductance (SL) (Siemens) Aquifer protective capacity
    1 > 10 Excellent
    2 5~10 Very good
    3 0.7~4.9 Good
    4 0.2~0.69 Moderate
    5 0.1~0.19 Weak
    6 < 0.1 Poor
    下载: 导出CSV
  • Aamer M, Sabir MF. 2014. Irrigation water quality based on hydro chemical analysis, district Rahim Yar Khan, Pakistan. Journal of Resources Development and Management, 4: 52-56.
    Abbas F, Ahmad A, Safeeq M, et al. 2014. Changes in precipitation extremes over arid to semiarid and subhumid Punjab, Pakistan. Theoretical and Applied Climatology, 116(3-4): 671-680. doi:  10.1007/s00704-013-0988-8
    Adagunodo TA, Akinloye MK, Sunmonu LA, et al. 2018. Groundwater exploration in Aaba residential area of Akure, Nigeria. Frontiers in Earth Science, 6: 66. https://doi.org/10.3389/feart.2018.00066 doi:  10.3389/feart.2018.00066
    Adeniji A, Obiora D, Omonona O, et al. 2013. Geoelectrical evaluation of groundwater po-tentials of Bwari basement area, Central Nigeria. International Journal of Physical Sciences, 8(25): 1350-1361.
    Akinwumiju AS, Olrunfemi MO, Afolabi O. 2016. GIS-based integrated groundwater poten-tial assessment of Osun Drainage Basin, South-western Nigeria. Ife Journal of Science, 18(1): 147-168. https://www.researchgate.net/publication/301804742_GIS-BASED_INTEGRATED_GROUNDWATER_POTENTIAL_ASSESSMENT_OF_OSUN_DRAINAGE_BASIN_SOUTHWESTERN_NIGERIA_1_2_2
    Alam N, Olsthoorn TO. 2014. Punjab scavenger wells for sustainable additional groundwater irrigation. Agricultural Water Management, 138(31): 55-67.
    Basharat M, Tariq A. 2013. Long-term groundwater quality and saline intrusion assessment in an irrigated environment: A case study of the aquifer under the lbdc irrigation system. Irrigation and Drainage, 62(4): 510-523. DOI:  10.1002/ird.1738
    Basharat M, Sultan S, Malik A. 2015. Groundwater management in Indus Plain and integrated water resources management approach. International Waterlogging and Salinity Res-earch Institute (IWASRI): Lahore, Pakistan.
    Basharat M, Tariq A-U-R. 2014. Command-scale integrated water management in response to spatial climate variability in Lower Bari Doab Canal irrigation system. Water Policy, 16(2): 374-396. https://doi.org/10.2166/wp.2013.221 doi:  10.2166/wp.2013.221
    Bureau of Statistics, Government of Punjab. 2014. Statistics division. Lahore. 2014-15
    Charoenpong S, Suwanprasit C, Thongchumnum P. 2012. Impacts of interpolation techniques on groundwater potential modeling using GIS in Phuket Province, Thailand. Andaman Environment and Natural Disaster Research Center.
    Daraz GK, Wahedullah, Bhatti AS. 2013. Ground-water investigation by using resistivity survey in Peshawar, Pakistan. Journal of Resources Development and Management, 2: 9-20.
    Dor N, Syafalni S, Abustan I, et al. 2011. Verifica-tion of surface groundwater connec-tivity in an irrigation canal using geophysical, water balance and stable isotope approaches. Water Resource Management, 5: 2837.
    El-Kadi AI. 2017. Groundwater models for resources analysis and management. CRC Press.
    Elliott J, Deryng D, Müller C, et al. 2014. Con-straints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9): 3239-3244. www.pnas.org/cgi/doi/10.1073/pnas.1222474110 doi:  10.1073/pnas.1222474110
    GOP. 2017. Agriculture statistics of Pakistan 2017-18. Ministry of National Food Security and Research Islamabad.
    Hasan M, Shang Y, Akhter G, et al. 2018. Geo-physical assessment of groundwater potential: A case study from Mian Channu Area, Paki-stan. Ground Water, 56(5): 783-796. DOI:  10.1111/gwat.12617
    Hasan M, Shang Y, Akhter G, et al. 2017. Geo-physical investigation of fresh-saline water interface: A case study from South Punjab, Pakistan. Ground Water, 55(6): 841-856. DOI:  10.1111/gwat.12527.
    Imran M, Ali A, Ashfaq M, et al. 2018. Impact of climate smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability. 10:2101. doi:  10.3390/su10062101
    Kearey P, Brooks M, Hill I. 2013. An introduction to geophysical exploration. John Wiley & Sons.
    Khan AD, Iqbal N, Ashraf M, et al. 2016. Ground-water investigation and mapping in Upper Indus Plain. Pakistan Council of Research in Water Resources (PCRWR), Islamabad: 72.
    Koefoed O. 1979. Groundwater principles, 1, Resistivity sounding measurements. Elsevier Scientific Publication co, Amsterdam-Oxford-New York.
    Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4): 529-556. DOI:  10.1190/1.1437342
    Manu E, Agyekum WA, Duah A, et al. 2019. Application of vertical electrical sounding for groundwater exploration of cape coast municipality in the central region of Ghana. Arabian Journal of Geosciences, 12(6): 196. DOI:  10.1007/s12517-019-4374-4
    Mehmood Q, Mehmood W, Awais M, et al. 2020. Optimizing groundwater quality exploration for irrigation water wells using geophysical technique in semi-arid irrigated area of Pakistan. Groundwater for Sustainable Development: 100397. https://doi.org/10.1016/j.gsd.2020.100397
    Michael F, Reilly TE, Michael GR, et al. 2003. Assessing groundwater vulnerability to contamination: Providing scientifically defensible information for decision makers. US Geological Survey Circular: 1224.
    Mohamaden M, El-Sayed H, Hamouda A. 2016. Combined application of electrical resistivity and GIS for subsurface mapping and groundwater exploration at El-Themed, Southeast Sinai, Egypt. The Egyptian Journal of Aquatic Research, 42(4): 417-426. DOI:  10.1016/j.ejar.2016.10.007
    Mujtaba G, Ahmed Z, Ophori D. 2007. Mana-gement of groundwater resources in Punjab, Pakistan, using a groundwater flow model. Journal of Environmental Hydrology, 15: 1-14. https://www.researchgate.net/publication/295407853_Management_of_groundwater_resources_in_Punjab_Pakistan_using_a_groundwater_flow_model
    Nas B, Berktay A. 2010. Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment, 160(1-4): 215-227. doi:  10.1007/s10661-008-0689-4
    Nwachukwu S, Bello R, Balogun A. 2019. Evaluation of groundwater potentials of Orogun, South-south part of Nigeria using electrical resistivity method. Applied Water Science, 9(8): 184. DOI:  10.1007/s13201-019-1072-z
    Obianwu VI, Atan O, Okiwelu O. 2015. Deter-mination of aquifer position using electric geophysical method. Applied Physics Re-search, 7(2): 83.
    Oladapo MI, Akintorinwa OJ. 2007. Hydro-geophysical study of Ogbese south western Nigeria. Global Journal of Pure and Applied Sciences, 13(1): 55-61. DOI:  10.4314/gjpas.v13i1.16669
    Punthakey J, Khan M, Ahmad RN, et al. 2016. Optimising canal and groundwater management to assist water user associations in maximizing crop production and managing salinisation in Australia and Pakistan.
    Shakir AS, Mughai H, Khan NM, et al. 2016. Impact of canal water shortages on ground-water in the Lower Bari Doab Canal System in Pakistan. Pakistan Journal Engineering & Application Science, 9: 87-97.
    Shakoor A. 2015. Hydrogeologic assessment of spatio-temporal variation in groundwater quality and its impact on agricultural produ-ctivity, University of Agriculture, Faisalabad.
    Sikandar P, Christen E, Stein TM. 2017. Vertical electrical sounding (ves) for salinity ass-essment of water-bearing formations. Irr-igation and Drainage, 66(2): 252-262. DOI:  10.1002/ird.2094
    Singh KP. 2005. Nonlinear estimation of aquifer parameters from surficial resistivity measure-ments. Hydrology and Earth System Sciences Discussions, 2(3): 917-938. DOI:  10.5194/hessd-2-917-2005.
    Terry N, Day-Lewis F, Robinson JL, et al. 2017. Scenario evaluator for electrical resistivity survey pre-modeling tool. Groundwater, 55(6): 885-890. https://doi.org/10.1111/gwat.12522 doi:  10.1111/gwat.12522
    WAPDA. 1980. Hydrological data of Bari Doab, basic data release. Directorate General of Hydrogeology, Lahore.
    WAPDA. 1981. Atlas-Soil salinity survey of ir-rigated areas of Indus basin 41 million acres. Survey and Research Organization, Planning Division, Lahore, WAPDA.
    Watto MA, Mugera AW. 2016. Groundwater depletion in the Indus plains of Pakistan: Im-peratives, repercussions and management issues. International Journal of River Basin Management, 14(4): 447-458. https://doi.org/10.1080/15715124.2016.1204154. doi:  10.1080/15715124.2016.1204154
    Yeboah-Forson A, Whitman D. 2013. Electrical resistivity characterization of anisotropy in the Biscayne aquifer. Ground Water, 52: 728-736. DOI:  10.1111/gwat.12107
  • [1] ILUNGA Nyembwe, AMADI Akobundu Nwanosike, Gilbert NDATIMANA, Nelson OKOT, Raphaël TSHIMANGA Muamba2024:  Evaluation of aquifer hydraulic properties from resistivity and pumping test data in parts of Gwagwalada, Northcentral Nigeria, Journal of Groundwater Science and Engineering, 12, 309-320. doi: 10.26599/JGSE.2024.9280023
    [2] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad2023:  Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277. doi: 10.26599/JGSE.2023.9280022
    [3] Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili2023:  Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262. doi: 10.26599/JGSE.2023.9280021
    [4] Bakuru Anandagajapathi Raju, Palavai Venkateswara Rao, Mangalampalli Subrahmanyam2023:  Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India, Journal of Groundwater Science and Engineering, 11, 116-132. doi: 10.26599/JGSE.2023.9280011
    [5] Benadela Laouni, Bekkoussa Belkacem, Gaidi Laouni2022:  Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria, Journal of Groundwater Science and Engineering, 10, 233-249. doi: 10.19637/j.cnki.2305-7068.2022.03.003
    [6] Dr Muthamilselvan A, Anamika Sekar, Emmanuel Ignatius2022:  Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [7] Guo Jin-xing, Li Zhi-ping, Stefan Catalin2022:  Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [8] Rustadi, Darmawan I Gede Boy, Haerudin Nandi, Setiawan Agus, Suharno2022:  Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia, Journal of Groundwater Science and Engineering, 10, 10-18. doi: 10.19637/j.cnki.2305-7068.2022.01.002
    [9] Kirlas Marios C2021:  Assessment of porous aquifer hydrogeological parameters using automated groundwater level measurements in Greece, Journal of Groundwater Science and Engineering, 9, 269-278. doi: 10.19637/j.cnki.2305-7068.2021.04.001
    [10] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [11] SONG Hong-wei, XIA Fan, MU Hai-dong, WANG Wei-qiang, SHANG Ming-sen2020:  Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method, Journal of Groundwater Science and Engineering, 8, 281-286. doi: 10.19637/j.cnki.2305-7068.2020.03.008
    [12] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR2020:  Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179. doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [13] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [14] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique2019:  Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [15] Pezhman ROUDGARMI, Ebrahim FARAHANI2017:  Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [16] Than Zaw, Maung Maung Than2017:  Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66.
    [17] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming2016:  Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [18] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng2015:  Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [19] Jingli Shao, Yali Cui, Yunzhang Zhao2013:  A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
    [20] Patsakron Assiri2013:  Artesian Flowing Wells Field of Phu Tok Aquifer, Journal of Groundwater Science and Engineering, 1, 95-98.
  • 加载中
图(8) / 表ll (2)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  504
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 录用日期:  2020-09-21
  • 刊出日期:  2020-12-28

目录

    /

    返回文章
    返回