Stable chlorine isotopic signatures and fractionation mechanism of groundwater in Anyang, China
-
Abstract: The present work provides an online Bench II-IRMS technique for the measurement of stable chlorine isotope ratio, which is used to measure the δ37Cl of 38 groundwater samples from the Karst and Quaternary aquifers in Anyang area. The regional distribution and signature of δ37Cl value are characterized on the base of isotopic data. The results suggest that the δ37Cl value of Quaternary groundwater decreases with increasing Cl− concentration, and has no correlation with δ18O and δD values, but closely correlates with the depth to water table. The fractionation mechanism of the chlorine isotope is expounded according to the type of groundwater. The δ37Cl value of karst water is generally positive, which is relevant to the dissolution of evaporite (gypsum mine), and may be caused by the mixing of groundwater and precipitation. The groundwater of Quaternary unconfined aquifer is mainly recharged by precipitation, and the δ37Cl value of groundwater is generally negative. The δ37Cl value of groundwater in Quaternary confined aquifer is more negative with increasing the depth to water level and elevated Cl− concentration, which is possible to result from the isotope fractionation of ion filtration. The groundwater with inorganic pollutants in Quaternary unconfined aquifer has generally a positive δ37Cl value.
-
Key words:
- North China Plain /
- Groundwater /
- Gas Bench II-IRMS /
- Chlorine isotope /
- Karst aquifer
-
Table 1. Results of chemical compositions and isotope of groundwater in the Anyang area
Num Position Well Type Cl− δ37ClSMOC
(‰)δ18OVSMOW
(‰)δDVSMOW
(‰)001 Beishan Village 1 120 Karst water 16.1 0.25 −8.06 −60.7 002 Beishan Village 120 Karst water 15.9 0.30 −8.36 −62.6 003 Xi-quyang 160 Karst water 41.5 0.29 −7.47 −58.6 004 Shangtao Village 25 Quaternary 13.4 0.03 −8.22 −63.0 005 Shang-yanke 185 Karst water 28.2 0.07 −7.91 −61.7 006 Redflag canal C Canal water 52.1 0.48 −7.80 −62.0 007 Redflag canal sp Spring water 10.6 0.04 −8.78 −64.5 008 Jian Village sp Spring water 10.5 0.20 −8.43 −61.3 009 Guojia Village sp Spring water 8.6 −0.26 −9.59 −65.9 010 Ni-hetou 15 Quaternary 191.6 −0.28 −7.81 −58.4 011 Beiqu Ditch 40 Quaternary 87.4 0.12 −7.55 −57.4 012 Pearl-spring sp Spring water 14.9 0.15 −8.31 −64.1 013 Jishan Village 1 15 Quaternary 89.1 0.32 −7.74 −60.8 014 Jishan Village 2 20 Karst water 17.0 0.49 −8.27 −63.4 015 Gutuo Village 6 Quaternary 146.5 0.56 −7.16 −54.4 016 Zhongle Village 10 Quaternary 23.1 0.02 −7.64 −61.2 017 Shaojia Tun 40 Quaternary 37.9 0.65 −7.52 −58.8 018 Biaojian Village 19 Quaternary 85.3 0.13 −7.97 −61.2 019 Guo-wangdu 20 Quaternary 38.4 5.12 −8.41 −66.9 020 Geological seven 70 Quaternary 130.4 0.20 −7.61 −60.0 021 Xiao-nanhai sp Spring water 22.3 0.35 −7.89 −62.6 022 Zhang er Village 13 Karst water 15.7 0.35 −8.41 −62.2 023 Xiabao Village 20 Karst water 16.7 0.60 −8.32 −63.0 024 Tielu Village 20 Karst water 16.5 0.11 −8.33 −62.2 025 Xiao-tun Village 17 Karst water 16.0 0.17 −8.50 −64.2 026 Guojiayuan 18 Karst water 23.6 0.13 −7.92 −61.0 027 Xiaodian Village 18 Karst water 20.0 0.12 −8.41 −63.0 028 Bei-xiangkou 19 karst water 20.9 0.27 −8.47 −63.4 029 Jiao-jiawan 17 Quaternary 17.6 −0.02 −9.12 −66.1 030 Beiwu Village 30 Quaternary 48.7 0.20 −10.0 −75.6 031 Fengsu Village 40 Quaternary 85.3 0 −7.28 −56.0 032 Lu Villge 70 Quaternary 154.8 0.14 −8.69 −66.3 033 Bei-liugou 20 Quaternary 291.5 −0.01 −9.20 −71.1 034 Dudian Village 40 Quaternary 105.5 0.21 −8.30 −63.0 035 Shang-cheng 40 Quaternary 29.4 0.03 −8.16 −61.6 036 Shi-changtun 12 Quaternary 150.8 0.09 −7.20 −56.8 037 Gaojia Village 20 Quaternary 33.1 −0.14 −7.70 −61.5 038 Ma-toujian Village 70 Quaternary 52.6 0.19 −8.33 −64.6 Table 2. The measured chlorine isotope values of the Bohai Sea and the Yellow Sea
Sampling location Sampling time(year) Measured
δ37Cl (‰)The Bohai sea Peitaiho 2010 0.06 Peitaiho (500 m from the shore) 2010 −0.10 Huanghua City, Hebei Province 2010 −0.08 Yellow Sea Yantai, Shandong 1995 0.00 The East China Sea Shanghai 2010 −0.01 Notes: ISL-354 seawater was used as the standard (Xiao et al. 2007) -
Campbell DJ. 1985. Fractionation of stable chlorine isotopes during transport through semipermeable membranes. The University of Arizona, USA: 48−68. Duce RA. 1998. The input of atmospheric chemicals to the ocean. WMO Bulletin, 47(1): 51−60. Eastoe CJ, Guilbert JM. 1992. Stable chlorine isotopes in hydrothermal processes. Geochimica et Cosmochimica Acta, 56(12): 4247−4255. doi: 10.1016/0016-7037(92)90265-K Eastoe CJ, Long A, Land LS, et al. 2001. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis and evolution. Chemical Geology, 176(1−4): 343−360. doi: 10.1016/S0009-2541(00)00374-0 Edmunds W, Guendouz AH, Mamou A, et al. 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Applied Geochemistry, 18: 805−822. Erickson IIIDJ, Seuzaret C, Keene WC, et al. 1999. A general circulation modelbased calculation of HCl and ClNO2 production from sea salt dechlorination: Reactive Chlorine Emissions Inventory. Journal of Geophysical Research: Atmospheres, 104(D7): 8347−8372. Jendrzejewski N, Eggenkamp HGM, ColemanM L. 2001. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: Scope of application to environmental problems. Applied Geochemistry, 16: 1021-1031. Kaufmann RS, Frape SK, MaNutt R. 1993. Chlorine stable isotope distribution of Michigan Basin formation waters. Applied Geochemistry, 8: 403-407. Kaufmann RS, Long A, Bentley HW. 1984. Natural chlorine isotope variations. Nature, 309: 338−340. doi: 10.1038/309338a0 Koehler G, Wassenaar LI. 2010. The stable isotopic composition (37Cl/35Cl) of dissolved chloride in rainwater. Applied geochemistry, 25(1): 91−96. doi: 10.1016/j.apgeochem.2009.10.004 Lang YC, Liu CQ, Satake H, et al. 2008. δ37Cl and δ34S variations of Cl− and SO42− in groundwater and surface water of Guiyang area, China. Advance in Earth Science, 23: 151−159. (in Chinese) Lavastre V, Jendrzejewski N, Agrinier P, et al. 2005. Chlorine transfer out of a very low permeability clay sequence (Paris Basin, France): 35Cl and 37Cl evidence. Geochimica et Cosmochimica Acta, 69(21): 4949−4961. doi: 10.1016/j.gca.2005.04.025 Lightowlers PJ, Cape JN. 1988. Sources and fate of atmospheric HCl in the UK and Western Europe. Atmospheric Environment, 22(1): 7−15. doi: 10.1016/0004-6981(88)90294-6 Liu CQ, Lang YC, Satake H, et al. 2008. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: Combined δ37Cl and δ34S approach. Environmental science & technology, 42(15): 5421−5427. Liu L. 2011. Chlorine isotopic composition and its indicative significance in groundwater in Hebei Plain. China Univesity of Geosciences (Wuhan). (in Chinese) Liu WG, Xiao YK, Wang QZ. 1996. Chlorine isotopic geochemistry lakes in the Qaidam Basin, China. Chemical Geology, 136: 271−279. Liu WG, Xiao YK, Sun DP. 1998. Characteristics and significance of chlorine isotope of brine and deposits in the Mahai Salt Lakes. Journal of Salt Lake Science, 3(2): 29−33. Liu YD, Zhou AG, Gan YQ, et al. 2013. An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a Gasbench II. Journal of Central South University, 20(1): 193−198. doi: 10.1007/s11771-013-1476-0 Long A, Eastoe CJ, Kaufmann RS. 1993. High-precision measurement of chlorine stable isotope ratios. Geochimica et Cosmochimica Acta, 57: 2907−2912. doi: 10.1016/0016-7037(93)90398-G Nier AO, Hanson EE. l936. A mass-spectrographic analysis of the ions produced in HCl under eletron impact. Physical Review, 50: 722-726. Numata M, Nakamura N, Koshikawa H, et al. 2002. Chlorine stable isotope measurements of chlorinated aliphatic hydrocarbons by thermal ionization mass spectrometry. Analytica Chimica Acta, 455: 129. Phillips FM, Bentley HW. 1987. Isotopic fractionation during ion filtration: I. Theory. Geochimica et Cosmochimica Acta, 51(3): 683−695. doi: 10.1016/0016-7037(87)90079-2 Shouakar-Stash O, Drimmie RJ, Frape SK. 2005. Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 19: 121−127. doi: 10.1002/rcm.1762 Shouakar-Stash O, Frape SK, Drimmie RJ. 2003. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents. Contaminant Hydrology, 60: 211-228. Sie PMJ, Frape SK. 2002. Evaluation of the groundwaters from the Stripa mine using stable chlorine isotopes. Chemical Geology, 182: 565−582. Sun AD, Xiao YK, Wang QZ. 2004. The separation and stable isotopic measurement of chlorine in low-concentration liquid sample. Chinese Journal of Analytical Chemistry. 32(10): 1362-1364. (in Chinese) Taylor JW, Grimsrud ER. 1969. Chlorine isotope ratios by negative ion mass spectrometry. Analytical Chemistry, 41: 805−810. doi: 10.1021/ac60275a002 Vengosh A, Chivas AR, McCulloch MT. 1989. Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chemical Geology: Isotope Geoscience Section, 79(4): 333−343. doi: 10.1016/0168-9622(89)90039-0 Volpe C, Spivack AJ. 1994. Stable chlorine isotopic composition of marine aerosol particles in the western Atlantic Ocean. Geophysical Research Letters, 21(12): 1161−1164. doi: 10.1029/94GL01164 Wagenbach D, Ducroz F, Mulvaney R, et al. 1998. Sea-salt aerosol in coastal Antarctic regions. Journal of Geophysical Research: Atmospheres, 103(D9): 10961−10974. doi: 10.1029/97JD01804 Xiao Y, Wang X, Wei H, et al. 2007. A new method for the removal of SO42− for isotopic measurement of chlorine. Chemical geology, 238(1−2): 38−43. doi: 10.1016/j.chemgeo.2006.10.011 Xiao Y, Liu W, Zhou Y, et al. 1997. Isotopic compositions of chlorine in brine and saline minerals. Chinese science bulletin, 42(5): 406−409. doi: 10.1007/BF02884233 Xiao YC, Liu WG, Zhou YM, et al. 2000. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China. Chinese Journal of Oceanology and Limnology, 18(2): 169−177. doi: 10.1007/BF02842577 Xiao YK, Jin L, Liu WG, et al. 1994. The isotopic compositions of chlorine in Da Qaidam Lake. Chinese Science Bulletin, 39: 1319−1322. doi: 10.1360/csb1994-39-14-1319 Xiao YK, Zhang CG. 1992. High precision measurement of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. International Journal of Mass Spectrometry and Ion Processes, 116: 183−192. doi: 10.1016/0168-1176(92)80040-8 Xiao YK, Zhou YM, Liu WG. 1995. Precise measurement of chlorine isotopes based on Cs2Cl+ by thermal ionization mass spectrometry. Analytical Letters, 28(7): 1295−1304. doi: 10.1080/00032719508000346 Xiao YK, Liu WG, Zhou YM. 1997. Isotopic compositions of chlorine in brine and saline minerals. Chinese Science Bulletin, 42(5): 406−409. Xiao YK, Zhou YM, Liu WG. 2001. The character of isotopic compositions of chlorine in ocean water. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 406-407. Xu QC, Sun AD. 2001. Preliminary Study for Chlorine Isotopic Fractionation in the Dissolution of NaCl. Journal of Salt Lake Science, 19(1): 9−15. Zhang CG, Xiao YK. 1993. High precision isotopic measurement of chlorine by thermal ionization mass spectrometry. Journal of Salt Lake Science, 1(2): 1−5.