• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques

Parvaiz Ahmad Ganie Ravindra Posti Garima Kishor Kunal Nityanand Pandey Pramod Kumar Pandey

Ganie PA, Posti R, Garima, et al. 2024. Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques. Journal of Groundwater Science and Engineering, 12(4): 360-386 doi:  10.26599/JGSE.2024.9280028
Citation: Ganie PA, Posti R, Garima, et al. 2024. Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques. Journal of Groundwater Science and Engineering, 12(4): 360-386 doi:  10.26599/JGSE.2024.9280028

doi: 10.26599/JGSE.2024.9280028

Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location map of the study area (a) highlighting the state of Uttarakhand. (b) Map of Uttarakhand indicating the location of the Goriganga Basin. (c) Detailed map illustrating the Goriganga Basin

    Figure  2.  Geology of the Goriganga Basin

    Figure  3.  Elevation based GCPS used for accuracy assessment

    Figure  4.  Flowchart of the methodological framework for studying groundwater flow characteristics

    Figure  5.  Extraction of drainage layer of the study area

    Figure  6.  Flowchart of the methodological framework used in the study

    Figure  7.  Elevation and error values of ASTER DEM with respect to GPS vlaues

    Figure  8.  Aquifer disposition of the Goriganga Basin

    Figure  9.  Formation, lithology and aquifer characterization of Goriganga Basin

    Figure  10.  Drainage pattern of the study area

    Figure  11.  Subwatersheds of the Goriganga Basin

    Figure  12.  Elevation profiling of Goriganga Basin

    Figure  13.  Groundwater flow characterization of Goriganga Basin

    Table  1.   Details of data sources used for the study

    S. No Data Specifications Source
    1. ASTER DEM Scene Id: ASTGTMV003_N29E080
    ASTGTMV003_N30E079
    (DOI):10.5067/ASTER/ASTGTM.003
    Resolution -30m
    United States Geological Survey (USGS) https://earthexplorer.usgs.gov/
    2. SOI toposheets Toposheet numbers: 53N15, 62B2, 62B3, 62B4, 62B6, 62B7, 62B8, and 62C5.Scale: 1: 50,000 Survey of India (SOI) https://www.surveyofindia.gov.in/
    3 Geology map Shapefile Bhukosh
    https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx accessed on 23.08.24.
    4 Hydrogeological map Tiff India WRIS
    https://indiawris.gov.in/wris/, accessed on 26.08.24
    下载: 导出CSV

    Table  2.   The mathematical formulae adopted for the quantitative measurement of the morphometric parameters

    Morphometric parameters Symbol Formula References
    Linear parameter measurement
    Basin length (km) Lb 1.312×A0.568 Schumm (1956)
    Where: Lb = Basin length
    A = Basin area area (km2)
    Stream number
    Nu
    Number of stream segments
    Strahler (1952)
    Stream order U Hierarchical rank Strahler (1964)
    Stream length (km) Lu Length of the stream segment Horton (1945)
    Mean stream length Lsm Lsm = Lu/Nu Strahler (1964)
    Where: Lsm = Mean stream length
    Lu = Total stream length of order 'u'
    Nu = Total no. of stream segments of order 'u'
    Stream length ratio RL RL = Lu/Lu-1 Horton (1945)
    Where: RL = Stream length
    Lu = Total stream length of order 'u'
    Lu-1 = Total stream length of its next lower order
    Bifurcation ratio Rb Rb = Nu/Nu+1 Schumm (1956)
    Where: Rb = Bifurcation ratio
    Nu = Total no. of stream segments of order 'u'
    Nu+1 = Number of stream segments of the next higher order
    Areal parameter measurement
    Basin area (km2) A GIS software analysis Schumm (1956)
    Basin perimeter (km) P GIS software analysis Schumm (1956)
    Length of overland flow (km) Lg Lg = 1/D×2 Horton (1945)
    Where: Lg = Length of over land flow
    D = Drainage density
    Drainage density (km/km2) Dd Dd = Lu/A Horton (1932)
    Where: D = Drainage density
    Lu = Total stream length of order 'u'
    A = Area of the basin (km2)
    Stream frequency (km/km2) Fs Fs = Nu/A Horton (1932)
    Where: Fs = Stream frequency
    Nu = Total no. of streams of all orders
    A = Area of the basin (km2)
    Constant of channel maintenance
    (Km2/Km)
    C C = 1/Dd Schumm (1956)
    Where: C = Constant of channel maintenance
    Dd =Drainage density
    Drainage intensity Di Di = Fs/Dd Faniran (1968)
    Where: Di = Drainage intensity
    Fs = Stream frequency
    Dd = Drainage density
    Infiltration number If If = Fs×Dd Faniran (1968)
    Where: If = Infiltration number
    Fs = Stream frequency
    Dd = Drainage density
    Texture ratio Rt Rt = N1/P Schumm (1956)
    Where: Rt = Texture ratio
    N1 = Number of 1st order streams
    P = Basin perimeter (km)
    Drainage texture Dt Dt = Nu/P Horton (1945)
    Where: Dt = Drainage texture
    Nu = Total number of streams
    P = Perimeter (km)
    Form factor Ff Rf = A/Lb2 Horton (1932)
    Where: Rf = Form factor
    A = Area of the basin (km2)
    Lb2 = Square of basin length (km)
    Circulatory ratio


    Circularity ratio
    Rc


    Rc
    Rc = 4×Pi×A/P2 Miller (1953)
    Where: Rc = Circulatory ratio
    Pi ='Pi' value, i.e. 3.14
    A = Area of the basin (km2)
    P = Perimeter (km)
    Elongation ratio Re Re = 2v(A/Pi/Lb) Strahler (1957)
    Where: Re = Elongation ratio
    Pi = 'Pi' value, i.e. 3.14
    A = Area of the basin (km2)
    Lb = Basin length (km)
    Relief parameter measurement
    Height of basin mouth (km) z GIS analysis / DEM
    Maximum height of the basin (km) Z GIS analysis/DEM
    Total basin relief (km) H H = Z - z Strahler (1952)
    Where: H= Total basin relief
    Z = Maximum height of the basin (km)
    z = Height of basin mouth (km)
    Relief ratio Rh Rh = H/Lb Schumm (1956)
    Where: Rh = Relief ratio
    H = Total relief of the basin (km)
    Lb = Basin length (km)
    Relative relief Rr Rr = 100 H/P Schumm (1956)
    Where: Rr = Relative relief
    H = Total relief of the basin (km)
    P = Perimeter (km)
    Ruggedness number Rn Rn = Dd×H Strahler (1964)
    Where: Rn = Ruggedness number
    Dd = Drainage density
    H = Total basin relief (km)
    下载: 导出CSV

    Table  3.   Linear morphometric parameters characterization

    Code Basin length (Lb) Stream order (U) Stream No. 'Nu' Stream length (Lu) Total stream length
    1st 2nd 3rd 4th 5th 6th Lu1 Lu2 Lu3 Lu4 Lu5 Lu6
    WS1 18.29 165 80 15 8 1 269 100.99 47.01 17.05 10.49 10.67 186.21
    WS2 20.5 205 70 9 2 5 291 132.16 51.46 18.61 11.04 6.65 219.92
    WS3 15.08 120 31 8 3 1 163 64.19 36.64 15.88 13.12 0.17 130.00
    WS4 13.18 92 22 3 1 3 1 122 58.07 19.72 9.62 4.78 2.44 5.95 100.58
    WS5 7.55 30 5 1 1 37 21.06 3.91 2.32 5.24 32.53
    WS6 11.16 68 16 5 1 90 42.78 17.93 17.93 6.21 84.85
    WS7 5.32 21 4 1 1 1 28 15.24 2.28 2.09 0.3 2.83 22.74
    WS8 12.34 85 13 3 1 102 49.67 15.09 12.41 7.2 84.37
    WS9 9.19 50 16 1 1 1 69 30.41 8.3 4.28 0.18 6.15 49.32
    WS10 12.49 83 23 5 2 1 114 57.43 18.6 4.61 5.28 5.27 91.19
    WS11 17.24 132 39 4 1 176 100.12 39.71 9.12 13.81 162.76
    WS12 3.79 7 1 1 1 10 7.64 0.07 3.24 0.03 10.98
    WS13 14.1 90 23 7 3 1 124 63.18 28.32 15.42 2.29 9.19 118.4
    WS14 20.55 185 67 8 1 1 1 263 117.54 47.09 18.6 3.2 0.1 16.71 203.24
    WS15 29.06 377 179 36 5 1 598 244.79 93.27 33.98 25.62 23.37 421.03
    WS16 12.2 75 36 6 1 118 44.11 17.64 10.69 6.11 78.55
    WS17 9.03 45 8 1 1 55 24.67 10.81 2.37 5.88 43.73
    WS18 11.55 70 15 6 1 92 38.26 18.09 7.43 7.91 71.69
    WS19 12.37 68 33 4 3 1 109 49.8 18.99 3.95 6.57 6.66 85.97
    WS20 15.53 122 35 6 2 1 166 81.3 28.04 8.3 11.3 6.68 135.62
    WS21 18.19 167 57 10 4 1 239 103.28 37.46 15.94 9.43 10.86 176.97
    WS22 12.42 89 21 5 1 1 117 49.71 19.63 6.14 10.4 0.27 86.15
    WS23 14.19 87 26 7 16 136 64.9 30.26 4.8 12.59 112.55
    WS24 15.94 102 57 3 1 163 74.9 35.95 13.58 7.53 131.96
    WS25 7.85 22 4 1 1 28 24.72 7.07 3.16 4.94 39.89
    WS26 4.28 14 2 1 17 4.94 1.85 2.88 9.67
    WS27 20.31 181 72 5 1 259 105.48 41.36 30.15 9.94 186.93
    WS28 22.86 187 59 9 1 1 1 258 123.84 56.41 25.6 6.2 0.83 21.37 234.25
    WS29 16.16 93 51 7 1 152 73.87 28.63 12.82 12.31 127.63
    WS30 11.99 66 26 3 1 1 97 48.62 25.85 7.57 1.74 9.26 93.04
    WS31 15.56 98 51 3 1 153 51.23 34.63 9.12 12.01 106.99
    WS32 3.85 9 1 1 1 12 4.71 0.08 0.1 3.7 8.59
    下载: 导出CSV
    Code Mean stream length (Lsm) Stream Length Ratio (Rl) Bifurcation ratio (Rb)
    Lu1/
    N1
    Lu2/
    N2
    Lu3/
    N3
    Lu4/
    N4
    Lu5/
    N5
    Lu6/
    N6
    Lu2/
    Lu1
    Lu3/
    Lu2
    Lu4/
    Lu3
    Lu5/
    Lu4
    Lu6/
    Lu5
    U1/
    U2
    U2/
    U3
    U3/
    U4
    U4/
    U5
    U5/
    U6
    WS1 0.61 0.58 1.13 1.31 10.67 0.47 0.36 0.62 1.02 - 2.06 5.33 1.88 8
    WS2 0.64 0.73 2.06 5.52 1.33 0.39 0.36 0.59 0.60 - 2.93 7.78 4.50 0.4
    WS3 0.53 1.18 1.98 4.373 0.17 0.57 0.43 0.83 0.01 - 3.87 3.88 2.67 3
    WS4 0.63 0.89 3.20 4.78 0.81 5.95 0.34 0.49 0.50 0.51 2.44 4.18 7.33 3.00 0.33 3
    WS5 0.70 0.78 2.32 5.24 0.19 0.59 - - - 6.00 5.00 0
    WS6 0.62 1.12 3.58 6.21 0.42 1 0.35 - - 4.25 3.20 5.00
    WS7 0.72 0.57 2.09 0.30 2.83 0.15 0.92 0.14 - - 5.25 4.00 1.00 0
    WS8 0.58 1.16 4.13 7.20 0.30 0.82 0.58 - - 6.54 4.33 3.00
    WS9 0.60 0.51 4.28 0.18 6.15 0.27 0.52 0.00 - 34.17 3.13 16.00 0 1
    WS10 0.69 0.80 0.92 2.64 5.27 0.32 0.25 1.15 1.00 - 3.61 4.60 2.50 2
    WS11 0.75 1.01 2.28 13.81 0.40 0.23 1.51 - - 3.38 9.75 4.00
    WS12 1.09 0.07 3.24 0.03 0.00 - - 46.29 0.0093 - 1 1
    WS13 0.70 1.23 2.20 0.76 9.19 0.45 0.54 0.15 4.01 - 3.91 3.29 2.33 3
    WS14 0.63 0.70 2.32 3.2 0.1 16.71 0.40 0.39 0.17 0.03 167.1 2.76 8.38 8.00 1 1
    WS15 0.64 0.52 0.94 5.12 23.37 0.38 0.36 0.75 0.91 - 2.11 4.97 7.20 5
    WS16 0.58 0.49 1.78 6.11 0.40 0.61 0.57 - - 2.08 6.00 6.00
    WS17 0.54 1.35 2.37 5.88 0.44 0.22 0.00 - - 5.63 8.00 0
    WS18 0.54 1.20 1.23 7.91 0.47 0.41 1.06 - - 4.67 2.50 6.00
    WS19 0.73 0.57 0.98 2.19 6.66 0.38 0.21 1.66 - - 2.06 8.25 1.33 0
    WS20 0.66 0.80 1.38 5.65 6.68 0.34 0.30 1.36 - - 3.49 5.83 3.00 0
    WS21 0.61 0.6 1.594 2.35 10.86 0.36 0.43 0.59 - - 2.93 5.70 2.50 0
    WS22 0.55 0.93 1.228 10.4 0.27 0.39 0.31 - - 0.03 4.24 4.20 0 1
    WS23 0.74 1.16 0.68 0.78 0.47 0.16 2.62 0.00 - 3.35 3.71 0.44
    WS24 0.73 0.63 4.52 7.53 0.48 0.38 0.55 0.00 - 1.79 19.00 3.00
    WS25 1.12 1.76 3.16 4.94 0.29 0.45 0.00 - 5.50 4.00 0
    WS26 0.35 0.92 2.88 0.37 0.00 - 0.00 7.00 0
    WS27 0.58 0.57 6.03 9.94 0.39 0.73 0.33 0.00 - 2.51 14.40 5.00
    WS28 0.66 0.95 2.84 6.2 0.83 21.37 0.46 0.45 0.24 0.13 25.75 3.17 6.56 9.00 1 1
    WS29 0.79 0.56 1.83 12.31 0.39 0.45 0.96 0.00 - 1.82 7.29 7.00
    WS30 0.73 0.99 2.52 1.74 9.26 0.53 0.29 0.23 0.00 - 2.54 8.67 3.00 0
    WS31 0.53 0.67 3.04 12.01 0.68 0.26 1.32 0.00 - 1.92 17.00 3.00
    WS32 0.52 0.08 0.1 3.7 0.02 0 - 0.00 9.00 0.00 0
    下载: 导出CSV

    Table  4.   Areal morphometric parameters

    Code A P Dd Fs C Lg Di If Rt Dt Rc Re Ff
    WS1 103.38 54.04 1.8 2.6 0.56 1.11 1.44 4.69 3.05 4.98 0.31 0.44 0.63
    WS2 126.45 50.84 1.74 2.3 0.57 1.15 1.32 4 4.03 5.72 0.3 0.61 0.62
    WS3 73.65 39 1.77 2.21 0.57 1.13 1.25 3.91 3.08 4.18 0.32 0.61 0.64
    WS4 58.12 39.8 1.73 2.1 0.58 1.16 1.21 3.63 2.31 3.07 0.33 0.46 0.65
    WS5 21.8 21.05 1.49 1.7 0.67 1.34 1.14 2.53 1.43 1.76 0.38 0.62 0.7
    WS6 43.32 31.01 1.96 2.08 0.51 1.02 1.06 4.07 2.19 2.9 0.35 0.57 0.67
    WS7 11.75 16.16 1.94 2.38 0.52 1.03 1.23 4.61 1.3 1.73 0.42 0.57 0.73
    WS8 51.73 35.54 1.63 1.97 0.61 1.23 1.21 3.22 2.39 2.87 0.34 0.51 0.66
    WS9 30.76 29.39 1.6 2.24 0.62 1.25 1.4 3.6 1.7 2.35 0.36 0.45 0.68
    WS10 52.83 32.34 1.73 2.16 0.58 1.16 1.25 3.72 2.57 3.53 0.34 0.63 0.66
    WS11 93.18 46.08 1.75 1.89 0.57 1.14 1.08 3.3 2.86 3.82 0.31 0.55 0.63
    WS12 6.48 12.01 1.69 1.54 0.59 1.18 0.91 2.61 0.58 0.83 0.45 0.56 0.76
    WS13 65.38 38.22 1.81 1.9 0.55 1.1 1.05 3.43 2.35 3.24 0.33 0.56 0.65
    WS14 126.95 58 1.6 2.07 0.62 1.25 1.29 3.32 3.19 4.53 0.3 0.47 0.62
    WS15 233.65 80.04 1.8 2.56 0.55 1.11 1.42 4.61 4.71 7.47 0.28 0.46 0.59
    WS16 50.7 32 1.55 2.33 0.65 1.29 1.5 3.61 2.34 3.69 0.34 0.62 0.66
    WS17 29.84 26.55 1.47 1.84 0.68 1.36 1.26 2.7 1.69 2.07 0.37 0.53 0.68
    WS18 46.01 31.4 1.56 2 0.64 1.28 1.28 3.12 2.23 2.93 0.35 0.59 0.66
    WS19 51.96 35.15 1.65 2.1 0.6 1.21 1.27 3.47 1.93 3.1 0.34 0.53 0.66
    WS20 77.5 41.91 1.75 2.14 0.57 1.14 1.22 3.75 2.91 3.96 0.32 0.55 0.64
    WS21 102.42 46.21 1.73 2.33 0.58 1.16 1.35 4.03 3.61 5.17 0.31 0.6 0.63
    WS22 52.3 35.15 1.65 2.24 0.61 1.21 1.36 3.69 2.53 3.33 0.34 0.53 0.66
    WS23 66.13 38 1.7 2.06 0.59 1.18 1.21 3.5 2.29 3.58 0.33 0.58 0.65
    WS24 81.22 48.04 1.62 2.01 0.62 1.23 1.24 3.26 2.12 3.39 0.32 0.44 0.64
    WS25 23.34 23.31 1.71 1.2 0.59 1.17 0.7 2.05 0.94 1.2 0.38 0.54 0.69
    WS26 8.02 11.56 1.21 2.12 0.83 1.66 1.76 2.56 1.21 1.47 0.44 0.75 0.75
    WS27 124.35 55.29 1.5 2.08 0.67 1.33 1.39 3.13 3.27 4.68 0.3 0.51 0.62
    WS28 153.09 57.72 1.53 1.69 0.65 1.31 1.1 2.58 3.24 4.47 0.29 0.58 0.61
    WS29 83.16 40.56 1.53 1.83 0.65 1.3 1.19 2.81 2.29 3.75 0.32 0.63 0.64
    WS30 49.2 34.93 1.89 1.97 0.53 1.06 1.04 3.73 1.89 2.78 0.34 0.51 0.66
    WS31 77.78 43.64 1.38 1.97 0.73 1.45 1.43 2.71 2.25 3.51 0.32 0.51 0.64
    WS32 6.66 11.14 1.29 1.8 0.78 1.55 1.4 2.32 0.81 1.08 0.45 0.67 0.76
    Notes: A: Basin area; P: Perimeter; Dd: Drainage density; Fs: Stream frequency; C: Constant of channel maintenance; Lg: Length of overland flow; Di: Drainage intensity; If: Infiltration number; Rt: Texture ratio; Dt: Drainage texture; Rc: Circulatory ratio; Re: Elongation ratio; Ff: Form factor.
    下载: 导出CSV

    Table  5.   Relief morphometric parameters

    Code Z z H Rh Rr Rn Code Z z H Rh Rr Rn
    WS1 6 3.5 2.5 0.14 4.63 4.5 WS17 4.8 2.1 2.7 0.3 10.17 3.969
    WS2 5.8 3.5 2.3 0.11 4.52 4.002 WS18 3.8 1.4 2.4 0.21 7.64 3.744
    WS3 6.2 3.6 2.6 0.17 6.67 4.602 WS19 4.2 1.9 2.3 0.19 6.54 3.795
    WS4 5.8 3.4 2.4 0.18 6.03 4.152 WS20 5.6 2.1 3.5 0.23 8.35 6.125
    WS5 5.5 3.6 1.9 0.25 9.03 2.831 WS21 3.8 1.2 2.6 0.14 5.63 4.498
    WS6 6 3.5 2.5 0.22 8.06 4.9 WS22 4 1.9 2.1 0.17 5.97 3.465
    WS7 5.6 3.3 2.3 0.43 14.23 4.462 WS23 5.6 2 3.6 0.25 9.47 6.12
    WS8 5.6 3.4 2.2 0.18 6.19 3.586 WS24 5.6 1.3 4.3 0.27 8.95 6.966
    WS9 5.6 3.2 2.4 0.26 8.17 3.84 WS25 2.8 1.3 1.5 0.19 6.44 2.565
    WS10 6 3.2 2.8 0.22 8.66 4.844 WS26 3 1.2 1.8 0.42 15.57 2.178
    WS11 6.2 3.4 2.8 0.16 6.08 4.9 WS27 5.4 1.4 4 0.2 7.23 6
    WS12 4.2 3.4 0.8 0.21 6.66 1.352 WS28 4 1 3 0.13 5.2 4.59
    WS13 4.2 3.4 0.8 0.06 2.09 1.448 WS29 3.2 0.9 2.3 0.14 5.67 3.519
    WS14 5.4 3.1 2.3 0.11 3.97 3.68 WS30 1.6 0.8 0.8 0.07 2.29 1.512
    WS15 5.8 2 3.8 0.13 4.75 6.84 WS31 2 0.8 1.2 0.08 2.75 1.656
    WS16 5.4 2.2 3.2 0.26 10 4.96 WS32 1.8 0.8 1 0.26 8.98 1.29
    Notes: Z: Maximum Basin relief; z: Minimum basin relief; H: Total basin relief; Rh: Relief ratio; Rr: Relative relief; Rn: Ruggedness number.
    下载: 导出CSV
  • Abijith D, Saravanan S, Singh L, et al. 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones - a case study from Ponnaniyaru watershed, Tamil Nadu, India. Hydrological Research, 3: 1−14. DOI: 10.1016/j.hydres.2020.02.002.
    Abrams M, Hook S, Ramachandran B. 2002. ASTER User Handbook Version 2. Jet Propulsion Laboratory, 4800: 135.
    Aher PD, Adinarayana J, Gorantiwar SD. 2014. Quantifcation of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511: 850−860. DOI: 10.1016/j.jhydrol.2014.02.028.
    Ashok K. 2014. Studies on Ichthyofaunal Diversity with special reference to monthly and seasonal variations of fish landings in glacial fed Mountainous Goriganga River of Kumaun Himalaya, Uttarakhand, India. Research Journal of Animal, Veterinary and Fishery Sciences, 2(4): 1−12.
    ASTER G. 2011. Validation Team: ASTER global digital elevation model version 2–summary of validation results. NASA Land Processes Distributed Active Archive Center and Joint Japan-US ASTER Science Team, 435.
    Chorley RJ. 1957. Climate and morphometry. The Journal of Geology, 65(6): 628−638. DOI: 10.1086/626468.
    Clark L. 1985. Groundwater abstraction from basement complex areas of Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18(1): 25−34. DOI: 10.1144/GSL.QJEG.1985.018.01.05.
    Congalton RG, Green K. 2009. Assessing the accuracy of remotely sensed data - Principles and practices. Second edition. CRC Press, Taylor & Francis Group, Boca Raton, FL 978-1-4200-5512-2.
    Das PK. 2015. Global warming, glacial lakes and cloud burst events in Garhwal-Kumaon Himalaya: A hypothetical analysis. International Journal of Environmental Sciences, 5(4): 697−708. DOI: 10.6088/ijes.2014050100065.
    Esper Angillieri MY. 2008. Morphometric analysis of Colangüil River Basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1): 107−111. DOI: 10.1007/s00254-007-0969-2.
    Faniran A. 1968. The index of drainage intensity: A provisional new drainage factor. Australian Journal of Science, 31(9): 326−330.
    Ganie PA, Posti R, Pandey PK. 2024. Exploring and modelling the hydro-morphological landscape of a Himalayan basin: A geospatial study of Nandakini Basin in Uttarakhand, India. Discover Geoscience, 2(1): 27. DOI: 10.1007/s44288-024-00032-2.
    Ganie PA, Posti R, Aswal AS, et al. 2023a. A comparative analysis of the vertical accuracy of multiple open-source digital elevation models for the mountainous terrain of the north-western Himalaya. Modeling Earth Systems and Environment, 9(2): 2723−2743. DOI: 10.1007/s40808-022-01641-x.
    Ganie PA, Posti R, Bharti VS, et al. 2023b. Striking a balance between conservation and development: A geospatial approach to watershed prioritisation in the Himalayan Basin. Conservation, 3(4): 460−490. DOI: 10.3390/conservation3040031.
    Ganie PA, Posti R, Kumar P, et al. 2016. Morphometric analysis of a Kosi River Basin, Uttarakhand using geographical information system. International Journal of Multidisciplinary and Current Research, 4: 1190−1200.
    Ganie PA, Posti R, Kunal G, et al. 2024a. Principle and applications of Geographic Information System (GIS) in coldwater fisheries development in India. In: Sarma D, Chandra S, Mallik SK. (eds) Aquaculture and Conservation of Inland Coldwater Fishes. Springer, Singapore. DOI: 10.1007/978-981-97-1790-3_25.
    Ganie PA, Posti R, Kunal K. 2023c. Modelling of the Himalayan Mountain river basin through hydro-morphological and compound factor-based approaches using geoinformatics tools. Modeling Earth Systems and Environment, 9(3): 3053−3084. DOI: 10.1007/s40808-023-01691-9.
    Ganie PA, Posti R, Kunal K, et al. 2022. Insights into the morphometric characteristics of the Himalayan River using remote sensing and GIS techniques: A case study of Saryu Basin, Uttarakhand, India. Applied Geomatics, 14(4): 707−730. DOI: 10.1007/s12518-022-00461-z.
    Gayen S, Bhunia GS, Shit PK. 2013. Morphometric analysis of Kangshabati-Darkeswar Interfuves area in West Bengal, India using ASTER DEM and GIS techniques. Journal of Geological Sciences, 2(4): 1−10. DOI: 10.4172/2329-6755.1000133.
    Geological Survey of India (GSI). 1981. Mineralogical map of Karnataka and Goa. Geological Survey of India.
    Giusti EV, Schneider WJ. 1965. The distribution of branches in river networks. USGS professional paper, 422G, US Geological Survey. DOI: 10.3133/pp422G.
    Gottschalk LC. 1964. Reservoir sedimentation reservoir sedimentation. In: Chow VT, Ed. , Handbook of Applied Hydrology, McGraw Hill Book Company, New York.
    Guth PL. 2011. Drainage basin morphometry: A global snapshot from the shuttle radar topography mission. Hydrology and Earth System Sciences, Copernicus Publications. European Geosciences Union. DOI: 10.5194/hess-15-2091-2011.
    Gustafson GU, Krásný J. 1994. Crystalline rock aquifers: Their occurrence, use and importance. Applied Hydrogeology, 2: 64−75. DOI: 10.1007/s100400050051.
    Lü QT, Yan JY, Chen XH, et al. 2020. Progress of deep geological survey project under the China geological survey. China Geology, 3(1): 153−72. DOI: 10.31035/cg2020001.
    Hoek E, Marinos P, Marinos V. 2005. Characterization and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. International Journal of Rock Mechanics and Mining Sciences, 42/2: 277−285. DOI: 10.1016/j.ijrmms.2004.09.015.
    Horton RE. 1932. Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1): 350−361. DOI: 10.1029/TR013i001p00350.
    Horton RE. 1945. Erosional development of streams and their drainage basins, hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3): 275−370. DOI: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
    Howard AD. 1990. Theoretical model of optimal drainage networks. Water Resources Research, 26(9): 2107−2117. DOI: 10.1029/WR026i009p02107.
    Joshi LM, Kotlia BS. 2015. Neotectonically triggered instability around the palaeolake regime in Central Kumaun Himalaya, India. Quaternary International, 371: 219−231. DOI: 10.1016/j.quaint.2014.10.033.
    Kabite G, Gessesse B. 2018. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. International Soil and Water Conservation Research, 6: 175−83. DOI: 10.1016/j.iswcr.2018.02.003.
    Kaplan D, Hegarty CJ. 2006. Understanding GPS: Principles and applications. Artech House, Boston, London, 32.
    Kačaroğlu F. 1999. Review of groundwater pollution and protection in karst areas. Water, Air, and Soil Pollution, 113: 337−356. DOI: 10.1023/A:1005014532330.
    Khatoon T, Javed A. 2022. Morphometric behavior of Shahzad Watershed, Lalitpur District, Uttar Pradesh, India: A geospatial approach. Journal of Geographic Information System, 14(3): 193−220. DOI: 10.4236/jgis.2022.143011.
    Krishnan A, Ramasamy J. 2022. Morphometric assessment and prioritization of the South India Moyar river basin sub-watersheds using a geo-computational approach. Geology, Ecology, and Landscapes, 1−11. DOI: 10.1080/24749508.2022.2109819.
    Kumar L, Joshi G, Agarwal KK. 2020. Morphometry and morphostructural studies of the parts of Gola River and Kalsa River Basins, Chanphi-Okhalkanda Region, Kumaun Lesser Himalaya, India. Geotectonics, 54(3): 410−427. DOI: 10.1134/S0016852120030048.
    Kumar N, Singh SK, Singh VG, et al. 2018. Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Modeling Earth System Environment, 4: 295−310. DOI: 10.1007/s40808-018-0425-1.
    Lachassagne P, Dewandel B, Wyns R. 2021. Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal, 29(8): 2561−94. DOI: 10.1007/s10040-021-02339-7.
    Loritz R, Kleidon A, Jackisch C, et al. 2019. A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrology and Earth System Sciences, 23(9): 3807−3821. DOI: 10.5194/hess-23-3807-2019.
    Mahadevaswamy G, Nagaraju D, Siddalingamurthy S, et al. 2011. Morphometric analysis of Nanjangud taluk, Mysore District, Karnataka, India, using GIS Techniques. International Journal of Geomatics and Geosciences, 1(4): 721−734.
    Miller VC. 1953. A quantitative geomorphologic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Project NR 389-042, Tech Report 3. Columbia University.
    Mohamed E. 2020. Watershed delineation and morphometric analysis using remote sensing and GIS mapping techniques in Qena-Safaga-Bir Queh, Central Eastern Desert. International Journal of Water Resources and Environmental Engineering, 12(2): 22–46. DOI: 10.5897/ijwree2019.0896.
    Moharir K, Pande C, Patode RS, et al. 2021. Prioritization of sub-watersheds based on morphometric parameter analysis using geospatial technology. Water Management and Water Governance: Hydrological Modeling, 19−33. DOI:  10.1007/978-3-030-58051-3_2
    Morris DG, Heerdegen RG. 1988. Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology, 1(2): 131−141. DOI: 10.1016/0169-555X(88)90011-6.
    Mustak SK, Baghmar NK, Ratre CR. 2012. Measurement of dissection index of Pairi River basin using remote sensing and GIS. National Geographical Journal of India, 58(2): 97−106.
    Muthamilselvan A, Rajasekaran N, Suresh R. 2019. Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India. Journal of Groundwater Science and Engineering. 7(3): 264−281. DOI: 10.19637/j.cnki.2305-7068.2019.03.007.
    Nag SK, Chakraborty S. 2003. Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing, 31(1): 25–35. DOI:10.1007/BF030 30749.
    Nag SK. 1998. Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(1): 69−76. DOI: 10.1007/BF03007341.
    Neuzil CE. 1994. How permeable are clays and shales? Water resources research, 30(2): 145−150. DOI: 10.1029/93WR02930.
    Nikhil Raj PP, Azeez PA. 2012. Morphometric analysis of a tropical medium river system: A case from Bharathapuzha river southern India. Open Journal of Modern Hydrology, 02: 91−98. DOI: 10.4236/ojmh.2012.24011.
    Olszevski N, Fernandes Filho EI, Costa LM, et al. 2011. Morphology and hydrological aspects of Black River Basin, division of state of Rio de Janeiro and Minas Gerais. Revi Árvore, 35(3): 485–492. DOI:10. 1590/S0100-67622011000300011.
    Pankaj A, Kumar P. 2009. GIS-based morphometric analysis of fve major sub-watersheds of Song River, Dehradun District, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37(1): 157−166. DOI: 10.1007/s12524-009-0007-9.
    Phillips JD. 2006. Evolutionary geomorphology: Thresholds and nonlinearity in landform response to environmental change. Hydrology and Earth System Sciences, 10(5): 731−742. DOI: 10.5194/hess-10-731-2006.
    Rai PK, Mohan K, Mishra S, et al. 2017. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7(1): 217−232. DOI: 10.1007/s13201-014-0238-y.
    Reddy GP, Maji AK, Gajbhiye KS. 2004. Drainage morphometry and its infuence on landform characteristics in a basaltic terrain, Central India–a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1): 1–16. DOI: 10.1016/j.jag.2004.06.003.
    Saha S, Das J, Mandal T. 2022. Investigation of the watershed hydro-morphologic characteristics through the morphometric analysis: A study on Rayeng basin in Darjeeling Himalaya. Environmental Challenges, 7: 100463. DOI: 10.1016/j.envc.2022.100463.
    Schumm SA. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5): 597−646. DOI: 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
    Selvan MT, Ahmad S, Rashid SM. 2011. Analysis of the geomorphometric parameters in high altitude glaciered terrain using SRTM DEM data in Central Himalaya, India. ARPN Journal of Science and Technology, 1(1): 22−27.
    Shekar PR, Mathew A. 2022. Evaluation of morphometric and hypsometric analysis of the Bagh River basin using remote sensing and geographic information system techniques. Energy Nexus, 7: 100−104. DOI: 10.1016/j.nexus.2022.100104.
    Shrestha AB, Bajracharya SR, Sharma AR, et al. 2017. Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. International Journal of Climatology, 37(2): 1066–1083. DOI: 10.1002/joc.4761.
    Singh S, Singh MB. 1997. Morphometric analysis of Kanhar river basin. National Geographical Journal of India, 43(1): 31−43.
    Smith KG. 1950. Standards for grading texture of erosional topography. American Journal of Science, 248(9): 655−668. DOI: 10.2475/ajs.248.9.655.
    Sreedevi PD, Owais SHHK, Khan HH, et al. 2009. Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of Geological Society of India, 273(4): 543−552. DOI: 10.1007/s12594-009-0038-4.
    Strahler AN. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11): 1117−1142. DOI: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
    Strahler AN. 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6): 913−920. DOI: 10.1029/TR038i006p00913.
    Strahler AN. 1964. Part II. Quantitative geomorphology of drainage basins and channel networks. In: Chow V, Ed., Handbook of Applied Hydrology, McGraw Hill, New York, 439−476.
    Subayani AM, Qari MH, Matsah MI. 2012. Digital elevation model and multivariate statistical analysis of morphometric parameters of some wadis, western Saudi Arabia. Arabian Journal of Geosciences, 5(1): 147−157. DOI: 10.1007/s12517-010-0149-7.
    Tarboton DG, Baker ME. 2008. Towards an algebra for terrain-based flow analysis. Representing, Modeling and Visualizing the Natural Environment: Innovations in GIS, 13: 167−194. DOI: 10.1201/9781420055504.
    Tassew BG, Belete MA, Miegel K. 2021. Assessment and analysis of morphometric characteristics of Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. International Journal of River Basin Management, 21(2): 195−209. DOI: 10.1080/15715124.2021.1938091.
    Thomas J, Joseph S, Thrivikramaji KP. 2010. Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2): 135−156. DOI: 10.1080/17538940903464370.
    UNAVCO facility. Geoid height calculator, Accessed on on 20 August 2024.
    Valdiya KS. 1976. Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian plains. Tectonophysics, 32(3/4): 353−386. DOI: 10.1016/0040-1951(76)90069-X.
    Valdiya KS. 1980. Geology of Kumaun lesser Himalaya (Vol. 280). Wadia Institute of Himalayan Geology. Rajpur Road Dehradun: Himachal times press.
    Vijith H, Satheesh R. 2006. GIS-based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. Journal of the Indian Society of Remote Sensing, 34(2): 181−185. DOI: 10.1007/BF02991823.
    Vinutha DN, Janardhana MR. 2014. Morphometry of The Payaswini Watershed, Coorg District, Karnataka, India, using remote sensing and GIS techniques. International Journal of Innovative Research in Science, Engineering and Technology, 3(5): 516–24.
    Vyas S, Singh GP. 2020. Morphometric analysis of hard rock terrain of Banne watershed, District Chattarpur, Madhya Pradesh, India using remote sensing and GIS. International Journal on Emerging Technologies, 11(2): 714−721.
    Wilson JSJ, Chandrasekar N, Magesh NS. 2012. Morphometric analysis of major sub-watersheds in Aiyar & Karai Pottanar Basin, Central Tamil Nadu, India using remote sensing & GIS techniques. Bonfring International Journal of Industrial Engineering and Management Science, 2 (Special Issue on Geospatial Technology Development in Natural Resource and Disaster Management), 08-15.
    Zhai X, Zhang Y, Zhang Y, et al. 2021. Simulating flash flood hydrographs and behavior metrics across China: Implications for flash flood management. Science of the Total Environment, 763: 142977. DOI: 10.1016/j.scitotenv.2020.142977.
  • [1] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ2024:  Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160. doi: 10.26599/JGSE.2024.9280012
    [2] Ertekin Can, Ulugergerli Emin U2022:  Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye, Journal of Groundwater Science and Engineering, 10, 335-352. doi: 10.19637/j.cnki.2305-7068.2022.04.003
    [3] Dr Muthamilselvan A, Anamika Sekar, Emmanuel Ignatius2022:  Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [4] Muthamilselvan A, Preethi B2022:  Spatial confirmation of termite mounds as Bio-geo indicator for groundwater occurrences using ground magnetic survey: A case study from Perambalur Region of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 10, 184-195. doi: 10.19637/j.cnki.2305-7068.2022.02.007
    [5] Muthamilselvan A2021:  Identification of suitable sites for open and bore well using ground magnetic survey, Journal of Groundwater Science and Engineering, 9, 256-268. doi: 10.19637/j.cnki.2305-7068.2021.03.008
    [6] Rabiranjan Prusty, Trinath Biswal2020:  Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India, Journal of Groundwater Science and Engineering, 8, 338-348. doi: 10.19637/j.cnki.2305-7068.2020.04.004
    [7] WU Ai-min, HAO Ai-bing, GUO Hai-peng, LIU Jing-tao, ZHANG Er-yong, WANG Huang, WANG Xin-feng, WEN Xue-ru, ZHANG Cui-guang2020:  Main progress and prospect for China's hydrogeological survey, Journal of Groundwater Science and Engineering, 8, 195-209. doi: 10.19637/j.cnki.2305-7068.2020.03.001
    [8] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR2020:  Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179. doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [9] A Muthamilselvan, N Rajasekaran, R Suresh2019:  Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [10] WEN Xue-ru, CHENG Yan-pei, DONG Hua, WANG Chun-xiao, ZHANG Er-yong, LIU Kun2019:  Interpretation for technical requirements of mapping regional groundwater resources, Journal of Groundwater Science and Engineering, 7, 288-294. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.009
    [11] CAO Yan-ling, CHENG Gang-jian, ZHAO Cheng-liang, WANG Tao, JIANG Hai-yang2018:  Application of CSAMT in hydrogeology exploration in Shandong Province–An example from geothermal exploration in Changdao County (south four islands), Journal of Groundwater Science and Engineering, 6, 58-64. doi: 10.19637/j.cnki.2305-7068.2018.01.007
    [12] HOU Guang-cai, YIN Li-he, XU Dan-dan2017:  Hydrogeology of the Ordos Basin, China, Journal of Groundwater Science and Engineering, 5, 104-115.
    [13] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li2016:  Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [14] ZHAI Yuan-zheng, JIANG Shi-jie, TENG Yan-guo, WANG Jin-sheng, GU Hong-biao, XIE Liang, YIN Zhi-hua2015:  Thirty years (1984-2014) of groundwater science teaching and research in China: A dissertation-based bibliometric survey, Journal of Groundwater Science and Engineering, 3, 222-237.
    [15] GUO Qing-shi, ZHOU Zhi-yong, GUO Si-si, HAO Ji-kun2014:  Application Research of Remote Sensing Technology in Regional Hydrogeological Survey, Journal of Groundwater Science and Engineering, 2, 62-67.
    [16] LIU Li-jun, LIU Zhi-gang, LI Dou, ZHANG Shao-cai, CUI Qiu-ping, WANG Juan2014:  Evaluation of groundwater supply capacity for agricultural drought emergency relief of Hebei Plain, Journal of Groundwater Science and Engineering, 2, 36-45.
    [17] SU Chen, XU Cheng-yun, CHEN Zong-yu, WEI wen2014:  Comparison of hydrogeological characteristics between the Sanjiang Plain and the Amur River Basin, Journal of Groundwater Science and Engineering, 2, 26-34.
    [18] CHENG Yan-pei, YUE Chen, ZHANG Jian-kang, YI Qing, WEN Xue-ru, LI Yong-chao2014:  Influence of fluctuations of frozen soil in North Asia on groundwater and assessment on resources, Journal of Groundwater Science and Engineering, 2, 71-77.
    [19] ZHAI Yuan-zheng, LEI Yan, WANG Jin-sheng, TENG Yan-guo2014:  Tracking footprint of hydrogeology research in China via scientific projects funded by the NSFC (1997–2013), Journal of Groundwater Science and Engineering, 2, 61-70.
    [20] Tong Yuanqing, Liu Li, Wang? Xiuming, Li Yingzhi2013:  Revision of Handbook of Hydrogeology (2nd Edition), Journal of Groundwater Science and Engineering, 1, 41-47.
  • 加载中
图(13) / 表ll (6)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  134
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-10
  • 录用日期:  2024-09-21
  • 网络出版日期:  2024-12-06
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回