• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of the scaling and corrosion in Tai'an geothermal water

Man Li Wei Zhang Yu-zhong Liao Feng Liu Long Li

Li M, Zhang W, Liao YZ, et al. 2025. Evaluation of the scaling and corrosion in Tai'an geothermal water. Journal of Groundwater Science and Engineering, 13(0): 1-14 doi:  10.26599/JGSE.2025.9280044
Citation: Li M, Zhang W, Liao YZ, et al. 2025. Evaluation of the scaling and corrosion in Tai'an geothermal water. Journal of Groundwater Science and Engineering, 13(0): 1-14 doi:  10.26599/JGSE.2025.9280044

doi: 10.26599/JGSE.2025.9280044

Evaluation of the scaling and corrosion in Tai'an geothermal water

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Distribution of geothermal resources and sampling point (a) and the conceptual model of geothermal system (b) in Tai'an

    Figure  2.  Piper diagram of water sample in Tai'an

    Figure  3.  Schoeller diagram of water sample in Tai'an

    Figure  4.  Major ions percentage of the water samples in Tai'an represented by bar graph

    Figure  5.  Plot of the ratio relationships between Cl and r Na+/rCl and rNa+/r(Na++Ca2++Mg2+) in the samples

    Figure  6.  Relationship between CAI1 and CAI2 in geothermal water samples

    Figure  7.  Comparison of ion concentration in geothermal water (Ca2+–HCO3, [Mg2+]/[Ca2+]–[Na+]/[Ca2+])

    Figure  8.  Comparison of ion concentration in geothermal water ((Ca2+ + Mg2+)–(HCO3 + SO42−), Ca2+–SO42−)

    Figure  9.  The figure of geothermal water minerals saturation index

    Figure  10.  The relationship between minerals saturation index and temperature

    Figure  11.  RI and R.S values for different fluids in the study area

    Table  1.   Statistics of chemical components of geothermal water in Tai'an

    Descriptive statitics pH T(°C) Ion index content (mg/L)
    TDS H2SiO3 K+ Na+ Ca2+ Mg2+ Li+ Sr2+ Cl SO42− HCO3 NO3 F Mn Ba
    Minimum value 7.13 25.00 455.00 18.20 2.27 45.70 72.95 6.13 0.03 0.65 26.57 156.50 80.36 0.00 0.51 0 0
    Maximum value 8.10 69.00 2,240.64 65.77 17.75 450.00 218.84 30.63 0.52 7.00 309.79 1,052.72 194.36 25.56 4.0 0.12 0.077
    Mean value 7.78 44.00 1,029.76 43.74 7.49 174.76 113.42 13.79 0.18 3.57 110.99 447.56 132.36 9.71 2.164 0.057 0.072
    Median 8.10 41.00 836.04 42.41 5.70 154.10 85.29 8.04 0.11 2.86 60.67 292.58 119.10 9.38 1.86 0.05 0.072
    下载: 导出CSV

    Table  2.   Correlation coefficient of geothermal water in Tai'an

    K+ Na+ Ca2+ Mg2+ Cl SO42− HCO3 TDS pH
    K+ 1
    Na+ 0.992** 1
    Ca2+ 0.928* 0.950* 1
    Mg2+ 0.051 −0.016 0.15 1
    Cl 0.992** 0.980** 0.940* 0.129 1
    SO42− 0.946* 0.971** 0.988** 0.054 0.938* 1
    HCO3 −0.287 −0.402 −0.458 0.611 −0.248 −0.499 1
    TDS 0.982** 0.988** 0.981** 0.115 0.982** 0.986** −0.37 1
    pH 0.559 0.464 0.349 0.521 0.547 0.371 0.56 0.48 1
    Notes: **: Significant correlation at the 0.01 level (two-tailed); * : Significant correlation at the 0.05 level (two-tailed).
    下载: 导出CSV

    Table  3.   Evaluation results of water samples in Tai'an

    Classification Numbering Location Water temperature pH Corrosion evaluation (Kk) Evaluation of calcium carbonate scaling (RI)
    Kk Kk+0.0503Ca2+ Judgement Calculated result Evaluation result
    Geothermal water TADR-A002 Xingyuan, Nanmatao Village, Tai 'an City 25 7.13 −0.64 −0.27 Non-corrosive water 6.84 Slight scaling
    TADR-A003 North of Shila Village, Tai 'an City 30 7.45 −0.14 0.43 Semi-corrosive water 6.61 Slight scaling
    TADR-004 Qiaogou Wuyue Wenquan, Daiyue District, Tai'an City 69 8.10 −1.66 −1.28 Non-corrosive water 5.67 Moderate Scaling
    TADR-005 East of Dongzhaocun Villiage, Feicheng, Anjiazhuang, Tai 'an City 52 7.90 1.06 \ Corrosive water 5.71 Moderate Scaling
    TADR-006 Wenquan Road, Taishan District, Tai'an City \ 8.05 1.85 \ Corrosive water 5.42 Moderate Scaling
    Cold groundwater TADW-A001 Nanmatao Village, Tai'an City 18 6.74 0.77 \ Corrosive water 7.68 Non-scaling
    TADW-A002 Foyu Village, Taohuayu Town, Tai'an City 20 7.21 −1.53 −1.09 Non-corrosive water 5.88 Moderate scaling
    下载: 导出CSV
    Classification Numbering Location Evaluation of calcium sulfate scaling (R.S) Evaluation of total amount of boiler scale (H0) Evaluation of hard fouling Foaming evaluation
    Calculated result Evaluation result Calculated result Evaluation result Calculated result Evaluation result Calculated result Evaluation result
    Geothermal water TADR-A002 Xingyuan, Nanmatao Village, Tai 'an City 0.006 Non-scaling 279.21 Abundant scaling 1.55 Hard sediment. 128.06 Semi-foaming
    TADR-A003 North of Shila Village, Tai 'an City 0.030 Non-scaling 380.27 Abundant scaling 2.98 Hard sediment. 427.10 Foaming
    TADR-004 Qiaogou Wuyue Wenquan, Daiyue District, Tai'an City 0.012 Non-scaling 256.66 Abundant scaling 9.02 Hard sediment. 460.82 Foaming
    TADR-005 East of Dongzhaocun Villiage, Feicheng, Anjiazhuang, Tai 'an City 0.111 Non-scaling 724.26 Significant scaling. 10.58 Hard sediment. 1249.65 Foaming
    TADR-006 Wenquan Road, Taishan District, Tai'an City 0.011 Non-scaling 316.99 Abundant scaling 5.27 Hard sediment. 167.13 Semi-foaming
    Cold groundwater TADW-A001 Nanmatao Village, Tai'an City 0.003 Non-scaling 215.09 A little scaling 1.33 Hard sediment. 63.72 Semi-foaming
    TADW-A002 Foyu Village, Taohuayu Town, Tai'an City 0.005 Non-scaling 319.99 Abundant scaling 1.10 Hard sediment. 85.12 Semi-foaming
    下载: 导出CSV
  • Appelo CAJ, Postma D. 2005. Geochemistry, groundwater and pollution. Rotterdam: A.A. Balkema Publisher.
    Arteaga CC, Rodríguez JA, Clemente CM, et al. 2013. Estimation of useful life in turbines blades with cracks in corrosive environment. Engineering Failure Analysis, 35: 576−589. DOI: 10.1016/j.engfailanal.2013.05.013.
    Cao YL, Cheng GJ, Zhao CL, et al. 2018. Application of CSAMT in hydrogeology exploration in Shandong Province–An example from geothermal exploration in Changdao County (south four islands). Journal of Groundwater Science and Engineering, 6(1): 58−64 DOI: 10.19637/j.cnki.2305-7068.2018.01.00.
    Cai YX, Zhong XY. 2015. Brief introduction to typical geothermal field in South Region of Shandong Province. Shandong Land and Resources, 31(5): 24−30. (in Chinese)
    Cen JW, Jiang F. 2022. Geothermal well scaling simulation by combining two phase flow with chemical equilibrium. Advances in New and Renewable Energy, 10(1): 20−26. (in Chinese)
    Delalande M, Bergonzini L, Gherardi F, et al. 2011. Fluid geochemistry of natural manifestations from the Southern Poroto–Rungwe hydrothermal system (Tanzania): Preliminary conceptual model. Journal of volcanology and geothermal research, 199(1/2): 127−141. DOI: 10.1016/j.jvolgeores.2010.11.002.
    Florent B, Christelle M, Elisabeth G, et al. 2000. Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Applied geochemistry, 15(6): 791−805. DOI: 10.1016/S0883-2927(99)00088-8.
    Gallup DL. 2009. Production engineering in geothermal technology: A review. Geothermics, 38(3): 326–334. DOI: 10.1016/j.geothermics.2009.03.001.
    Gao NA, Wang XW, Liang HJ, et al. 2023. Genetic mechanism of geothermal system in Daming Sag, Linqing Depression in the junction of Hebei, Shandong and Henan Provinces and its exploration potential. Geology in China, 50(4): 1149−1162. (in Chinese) DOI: 10.12029/gc20201230002.
    He YJ, Liu X, Xing LX, et al. 2022. Scaling process simulation and anti-scaling measures in karst geothermal field in Baoding, Hebei. Earth Science Frontiers, 29(4): 430−437. (in Chinese) DOI: 10.13745/j.esf.sf.2021.11.4.
    Kang FX, Yang XC, Wang XP, et al. 2022. Hydrothermal features of a sandstone geothermal reservoir in the North Shandong Plain, China. Lithosphere, 2021(Special 5): 1675798. DOI: 10.2113/2022/1675798.
    Langelier WF. Chemical equilibria in water treatment. Dental Update, 2011, 38(6): 149−149.
    Larson TE, Sollo FW. Loss in water main carrying capacity. Journal (American Water Works Association), 1967, 59(12): 1565−1572. DOI: 10.1002/j.1551-8833.1967.tb03486.x.
    Lei HW, Bai B, Cui YX, et al, 2023. Quantitative assessment of calcite scaling of a high temperature geothermal production well: Hydrogeochemistry—Application to the Yangbajing geothermal fields, Tibet. Earth Science, 48(3): 935–945. (in Chinese) DOI: 10.3799/dqkx.2022.163.
    Li HQ, Zhang SS, Xie MZ, et al. 2020. The occurrence characteristics and exploration and development direction of geothermal resources in Yuxian Basin, northwest Hebei Province. Geological Review, 66(4): 919−932. (in Chinese) DOI: 10.16509/j.georeview.2020.04.010.
    Li XL, Du ZW, Zhang L,et al. 2021. Distribution characteristics and present condition of exploitation and utilization of geothermal resources in Shandong Province. Shandong Land and Resources, 37(1): 37−43. (in Chinese) DOI:10.12128/j.issn.l672 6979.2021.01.005.
    Liang HJ, Guo XF, Gao T, et al. 2020. Scaling spot prediction and analysis of influencing factors for a geothermal well in Boye County, Hebei Province. Petroleum Drilling Techniques, 48(5): 105−110. (in Chinese) DOI: 10.11911/syztjs.2020096.
    Lin HB. 2022. Study on scaling mechanism and anti-scaling of high temperature geothermal wellboree. Xi'an Shiyou University, (in Chinese)
    Liu MY. 2015. A review on controls of corrosion and scaling in geothermal fluids. Advances in New and Renewable Energy, 3(1): 38−46. (in Chinese) DOI: 10.3969/j.issn.2095-560X.2015.01.007.
    Liu YQ, Zhou L, Lv L, et al. 2020. Geothermal geological characteristics and genesis of hot water in the central mountain area of Shandong Province. Geological Bulletin of China, 39(12): 1908−1918. (in Chinese)
    Lv Y. 2020. Preparations and properties in pool boiling of anticorrosion and antifouling coatingson different metal substrates for oilfield geothermal water. Tianjin University. (in Chinese)
    Mao XP, Li KW, Wang XW. 2019. Causes of geothermal fields and characteristics of ground temperature fields in China. Journal of Groundwater Science and Engineering, 7(1): 15−28. DOI: 10.19637/j.cnki.2305-7068.2019.01.002.
    Manan S, Vrutang S, Kaushalkumar D, et al. 2023. Evaluation of geothermal water and assessment of corrosive and scaling potential of water samples in Tulsishyam Geothermal Region, Gujarat, India. Environmental Science and Pollution Research, 30(15): 44684−44696. DOI: 10.1007/s11356-023-25165-8.
    Marimuthu S, Reynoids DA, La Salle CLG, et al. 2005. A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system. Journal of hydrology, 315(1/4): 93−116. DOI: 10.1016/j.jhydrol.2005.03.041.
    Meng XL, Wang QB, Yang PJ. 2021. Investigation and problem analysis on development and utilization of geothermal resources in Shandong Province. Shandong Land and Resources, 37(11): 36−42. (in Chinese) DOI:10.12128/ji.ssn.1672 6979.2021.11.006.
    Mou LK. 2017. Study of occurrence characteristics and formation model of geothermal water in Shandong Province. College of Earth Science and Engineering. (in Chinese)
    Oddo JE, Tomson MB. 1994. Why scale forms in the oil field and methods to predict it. SPE Prod & Fac, 9: 47–54. DOI: 10.2118/21710-PA.
    Pang Y. 2023. Study on the corrosion mechanism of abandoned oil wells to geothermal wells-Takingan oil well in the western oil region of Northern Shaanxias–An example speciality: Petroleum and Natural Gas. Xi'an Shiyou University. (in Chinese)
    Pátzay G, Stáhl G, Karman FH, et al. 1998. Modeling of scale formation and corrosion from geothermal water. Electrochimica Acta, 43(1): 137−147. DOI: 10.1016/S0013-4686(97)00242-9.
    Pazheri FR, Othman MF, Malik NH. 2014. A review on global renewable electricity scenario. Renewable and Sustainable Energy Reviews, 31(3): 835−845. DOI: 10.1016/j.rser.2013.12.020.
    Riddick TM. 1944. The mechanism of corrosion of water pipes. Water Work Sand Sewerage, 133.
    Ryznar JW, Langelier WF. 1944. A new index for determining amount of calcium carbonate scale formed by a water. Journal-American Water Works Association, 36(4): 472−486.
    Song J, Liu M, Sun X. 2020. Model analysis and experimental study on scaling and corrosion tendencies of aerated geothermal water. Geothermics, 85: 101766. DOI: 10.1016/j.geothermics.2019.101766.
    Stahl G, Patzay G, Weiser L, et al. 2000. Study of calcite scaling and corrosion processes in geothermal systems. Geothermics, 29(1): 105−119. DOI: 10.1016/S0375-6505(99)00052-8.
    Tan XB, Wei SM, Bo BY, et al. 2019. Analysis of occurrence characteristics of geothermal resources and its relation to control structures in Zibo City, China. Journal of Groundwater Science and Engineering, 7(1): 70−76. DOI: 10.19637/j.cnki.2305-7068.2019.01.007.
    Wang GL, Lin WJ. 2020. Main hydro-geothermal systems and their genetic models in China. Acta Geologica Sinica, 94(7): 1923−1937. (in Chinese) DOI: 10.19762/j.cnki.dizhixuebao.2020224.
    Wang YX, Liu SL, Bian QY, et al. 2015. Scaling analysis of geothermal well from ganzi and countermeasures for anti-scale. Advances in New and Renewable Energy, 3: 202−206. DOI: 10.3969/j.issn.2095-560X.2015.03.007.
    Wei MH, Tian TS, Sun YD, et al. 2012. A study of the scaling trend of thermal groundwater in Kangding county of Sichuan. Hydrogeology Engineering Geology, 5: 132−138. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.2012.05.029.
    Yu Y, Zhou X, Fang B. 2007. Judgement and analysis of the scaling trend of thermal groundwater in Beijing's Urban Geothermal Fields. City Geology, 2(2): 14−18. (in Chinese)
    Zarrouk SJ, Woodhurst BC, Morris C. 2014. Silica scaling in geothermal heat exchangers and its impact on pressure drop and performance: Wairakei binary plant, New Zealand. Geothermics, 51: 445−459. DOI: 10.1016/j.geothermics.2014.03.005.
    Zhang H, Hu YZ, Yun ZH, et al. 2016. Applying hydro-geochemistry simulating technology to study scaling of the high-temperature geothermal well in Kangding County. Advances in New and Renewable Energy, 4(2): 111−117. (in Chinese) DOI: 10.3969/j.issn.2095-560X.2016.02.006.
    Zheng T, Stefánsson A, Kang FX, et al. 2023. Geochemical and isotope constraints on the hydrogeology and geochemistry of the geothermal waters in the Shandong Peninsula, China. Geothermics, 108: 102628. DOI: 10.1016/j.geothermics.2022.102628.
    Zhu JL, Yao T. 2004. Judgement and calculation of trend of corrosion and scaling of geothermal water. Industrial Water Use and Waste Water, 35(2): 23−25. (in Chinese)
    Zhu JL. 2006. Geothermal energy development and application technology. The Chemical Industry Press. (in Chinese)
  • [1] Jing Hu, Yan-guang Liu, Xin Wang, Ying-nan Zhang, Mei-hua Wei2024:  Progress and prospect of mid-deep geothermal reinjection technology, Journal of Groundwater Science and Engineering, 12, 321-338. doi: 10.26599/JGSE.2024.9280024
    [2] Masoud H Hamed, Rebwar N Dara, Marios C Kirlas2024:  Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq, Journal of Groundwater Science and Engineering, 12, 16-33. doi: 10.26599/JGSE.2024.9280003
    [3] Jia-xing Sun, Gao-fan Yue, Wei Zhang2023:  Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems, Journal of Groundwater Science and Engineering, 11, 379-390. doi: 10.26599/JGSE.2023.9280030
    [4] Feng Liu, Wei Zhang, Gui-ling Wang, Shuai-chao Wei, Chen Yue, Guang-zheng Jiang, Yu-zhong Liao2023:  Geothermal anomalies in the Xianshuihe area: Implications for tunnel construction along the Sichuan-Tibet Railway, China, Journal of Groundwater Science and Engineering, 11, 237-248. doi: 10.26599/JGSE.2023.9280020
    [5] Liu Chun-lei, Lu Chen-ming, Li Ya-song, Hao Qi-chen, Cao Sheng-wei2022:  Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137. doi: 10.19637/j.cnki.2305-7068.2022.02.003
    [6] Xi Yu-fei, Zhao Ya-bo, DA Yuen2021:  Geothermal structure revealed by curie isothermal surface under Guangdong Province, China, Journal of Groundwater Science and Engineering, 9, 114-120. doi: 10.19637/j.cnki.2305-7068.2021.02.003
    [7] ZHANG Ying, LUO Jun, FENG Jian-yun2020:  Characteristics of geothermal reservoirs and utilization of geothermal resources in the southeastern coastal areas of China, Journal of Groundwater Science and Engineering, 8, 134-142. doi: 10.19637/j.cnki.2305-7068.2020.02.005
    [8] YANG Hai-jun, DONG Jian-xing, SUN Dong, HUANG Rui2019:  Characteristics of shallow geothermal fields in major cities of Tibet Autonomous Region, Journal of Groundwater Science and Engineering, 7, 77-85. doi: 10.19637/j.cnki.2305-7068.2019.01.008
    [9] MAO Xiao-ping, LI Ke-wen, WANG Xin-wei2019:  Causes of geothermal fields and characteristics of ground temperature fields in China, Journal of Groundwater Science and Engineering, 7, 15-28. doi: 10.19637/j.cnki.2305-7068.2019.01.002
    [10] FENG Jian-yun, ZHANG Ying, HE Zhi-liang, SUN Zi-ming, LUO Jun2019:  Discussion on evaluation methodology of hydrothermal geothermal reservoir, Journal of Groundwater Science and Engineering, 7, 29-41. doi: 10.19637/j.cnki.2305-7068.2019.01.003
    [11] CAO Yan-ling, CHENG Gang-jian, ZHAO Cheng-liang, WANG Tao, JIANG Hai-yang2018:  Application of CSAMT in hydrogeology exploration in Shandong Province–An example from geothermal exploration in Changdao County (south four islands), Journal of Groundwater Science and Engineering, 6, 58-64. doi: 10.19637/j.cnki.2305-7068.2018.01.007
    [12] WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui2018:  Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186. doi: 10.19637/j.cnki.2305-7068.2018.03.003
    [13] GAN Hao-nan, LIN Wen-jing, YUE Gao-fan, WANG Xiao, MA Feng, WANG Gui-ling2017:  Research on the fault controlling mechanism of geothermal water in Zhangzhou Basin, Journal of Groundwater Science and Engineering, 5, 326-335.
    [14] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui2017:  Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [15] ZHANG Pei-feng2016:  Thermal stresses analysis of casing string used in enhanced geothermal systems wells, Journal of Groundwater Science and Engineering, 4, 293-300.
    [16] LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei2016:  Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid, Journal of Groundwater Science and Engineering, 4, 81-87.
    [17] SHANG Xiao-gang, YU Xiang-hui, LI Cheng-ying, CHAI Hui-peng, JIANG Nan-jie2015:  Geochemical characteristics of geothermal water in Weiyuan geothermal field, Huzhu County, Qinghai Province, Journal of Groundwater Science and Engineering, 3, 59-69.
    [18] GUO Qing-hai, ZHANG Xiao-bo, LIU Ming-liang, LI Jie-xiang, ZHOU Chao, ZHANG Can-hai, ZHU Ming-cheng, ZHANG Xiao-bo, GUO Wei, WANG Yan-xin2015:  Geochemical genesis of geothermal waters from the Longling hydrothermal area, Yunnan, Southwestern China, Journal of Groundwater Science and Engineering, 3, 213-221.
    [19] LIU Zhi-ming, LIN Wen-jing, LIU Qin-xuan, ZHANG Wei, LIU Chun-lei, MA Feng, WANG Gui-ling2014:  Evaluation and reasonable utilization of geothermal resources of Shenze County, Hebei Province, Journal of Groundwater Science and Engineering, 2, 17-27.
    [20] LIU Kai, SUN Ying,  LI Yu, LIU Jiu-rong, LIU Ying-chao2014:  Zonation for exploitation and utilization of geothermal water in Beijing, Journal of Groundwater Science and Engineering, 2, 94-104.
  • 加载中
图(11) / 表ll (4)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 录用日期:  2024-09-30
  • 网络出版日期:  2024-11-29

目录

    /

    返回文章
    返回