• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling

Jing-tao Shi Ge Gao Jun-jian Liu Yu-ge Jiang Bo Li Xiao-yan Hao Jun-chao Zhang Zhao-yi Li Huan Sun

Shi JT, Gao G, Liu JJ, et al. 2025. Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling. Journal of Groundwater Science and Engineering, 13(3): 209-224 doi:  10.26599/JGSE.2025.9280050
Citation: Shi JT, Gao G, Liu JJ, et al. 2025. Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling. Journal of Groundwater Science and Engineering, 13(3): 209-224 doi:  10.26599/JGSE.2025.9280050

doi: 10.26599/JGSE.2025.9280050

Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location and geologic map of the study area (B1: Cascade River Basin; B2: Laoha River Basin; B3: Daling River Basin; B4: Qinglong River Basin; B5: Laoniu River Basin)

    Figure  2.  Single-indicator evaluation map of ecological-geological vulnerability in Pingquan City

    Figure  3.  Ecological vulnerability assessment of Pingquan City (a: Ecological sensitivity assessment; b: Ecological resilience assessment; c: Ecological pressure assessment; d: Ecological Vulnerability Assessment)

    Figure  4.  Mean EVI values (a) and area ratios of EVI to each element (b) for different watershed districts in the Pingquan area

    Figure  5.  Interaction detector results for the Pingquan area

    Table  1.   Evaluation index system of SRP model for ecological vulnerability in Pingquan area

    Target level Factor layer Indicator layer Relationship type
    Ecological vulnerability Ecological sensitivity Geo-construction (X1) Proactively
    Elevation (X2) Proactively
    Altitude (X3) Proactively
    Annual rainfall (X4) Pessimistic
    Average annual temperature (X5) Pessimistic
    Dryness index (X6) Pessimistic
    Vegetation cover (X7) Pessimistic
    Soil erosion factor (X8) Proactively
    Landscape fragmentation (X9) Proactively
    Ecological resilience Vegetation NPP (X10) Pessimistic
    Soil type (X11) Proactively
    Soil nutrient synthesis (X12) Pessimistic
    Ecological richness (X13) Pessimistic
    Ecological pressure Population density (X14) Proactively
    GDP (X15) Proactively
    Food crop production (X16) Proactively
    Gross output value of agriculture, forestry, livestock and fisheries (X17) Proactively
    下载: 导出CSV

    Table  2.   Soil N, P, K composite nutrient index division

    Indicator Ki 100 90 70 50 30
    N (g/kg) >2 >1.5–2 >1–1.5 >0.75–1 ≤0.75
    P >1 >0.8–1 >0.6–0.8 >0.4–0.6 ≤0.4
    K >25 >20–25 >15–20 >10–15 ≤10
    下载: 导出CSV

    Table  3.   Grading criteria for ecological vulnerability assessment in Pingquan City

    Factor Indicator Very low vulnerability Low vulnerability Moderate vulnerability High vulnerability Very high vulnerability Grading standard
    Ecological sensitivity X1 Quaternary terrestrial loose accumulation formation Jurassic-Cretaceous medium-acidic ejecta formation; Precambrian medium-acidic rock formation Precambrian basement rock formation; Precambrian regional metamorphic rock formation; Precambrian contact metamorphic rock formation Triassic-Cretaceous terrestrial clastic formation; Jurassic-Cretaceous volcanic clastic formation; Sinian-Permian sandy clastic formation; Sinian-Carboniferous argillaceous clastic formation Sinian-Permian marine carbonate rock formation Field survey validation
    X2 (°) <2 [2,6) [6,15) [15,25) ≥25 TD/T1055-2019
    X3 (m) <595 [595,741) [741,909) [909,1152) ≥1152 Natural breakpoint method
    X4 (mm) >582 (528,582] (478,528] (432,478] ≤432 Natural breakpoint method
    X5 (°C) >9.2 (8.6,9.2] (7.8,8.6] (6.5,7.8] ≤6.5 Natural breakpoint method
    X6 >30.7 (28.2,30.7] (26.1,28.2] (23.3,26.1] ≤23.3 Natural breakpoint method
    X7 >0.91 (0.72,0.91] (0.49,0.72] (0.18,0.49] ≤0.18 Natural breakpoint method
    X8 <0.03052 [0.03052,0.03068) [0.03068,0.03085) [0.03085,0.03110) ≥0.03110 Natural breakpoint method
    X9 <23.28 [23.28,48.46) [48.46,82.89) [82.89,164.67) ≥164.67 Natural breakpoint method
    Ecological resilience X10 >557.6 (486.8,557.6] (430.4,486.8] (214.2,430.4] ≤214.2 Natural breakpoint method
    X11 Brown soil Cinnamon soil Damp soil Coarse aggregate soil Field survey validation
    X12 (96.6,100] (91.8,96.6] (87.3,91.8] [80,87.3] <80 Natural breakpoint method
    X13 >86.55 (76.66,86.55] (68.63,76.66] (53.13,68.63] ≤53.13 Natural breakpoint method
    Ecological pressure X14 (persons/km2) <83 [83,124) [124,141) [141,169) ≥169 Natural breakpoint method
    X15 (million/km2) <336 [336,374) [374,444) [444,727) ≥727 Natural breakpoint method
    X16/t <1283 [1283,8022) [8022,12963) [12963,19230) ≥19230 Natural breakpoint method
    X17/million <9326 [9326,19168) [19168,28566) [28566,38376) ≥38376 Natural breakpoint method
    下载: 导出CSV

    Table  4.   The load of each index factor in the study area

    Typology F1 F2 F3 Typology F1 F2 F3 Typology F1 F2 F3
    Sensitivity −0.070 −0.027 0.997 Resilience 0.926 0.369 0.075 Pressure −0.370 0.929 −0.001
    X1 0.846 −0.453 −0.014 X10 0.045 −0.011 −0.043 X14 −0.024 0.983 −0.167
    X2 0.111 −0.093 −0.213 X11 0.988 −0.147 0.009 X15 0.015 0.089 0.071
    X3 −0.081 −0.174 −0.459 X12 −0.007 −0.002 0.999 X16 0.653 0.136 0.741
    X4 0.406 0.637 0.028 X13 0.147 0.989 0.002 X17 0.757 −0.088 −0.646
    X5 0.121 0.155 0.455
    X6 0.278 0.455 −0.214
    X7 0.065 −0.050 −0.136
    X8 0.039 −0.296 0.570
    X9 0.057 −0.169 −0.383
    Eigenvalue 0.073 0.046 0.035 Eigenvalue 0.118 0.036 0.012 Eigenvalue 0.064 0.031 0.006
    Variance/% 36.13 22.663 17.52 Variance/% 69.45 21.169 7.027 Variance/% 61.343 30.180 5.790
    下载: 导出CSV

    Table  5.   Judgement matrix for evaluation of ecological sensitivity indicators in Pingquan City

    TypologyX1X2X3X4X5X6X7X8X9
    X11
    X21/81
    X31/811
    X41/81/41/41
    X51/81/21/21/21
    X61/91/21/3111
    X71/211/21/21/41/31
    X811/61/61/61/61/61/61
    X91/21/21/61/81/81/61/41/81
    下载: 导出CSV

    Table  6.   Judgement matrix for evaluation of ecological resilience indicators in Pingquan City

    TypologyX10X11X12X13
    X101
    X111/41
    X121/21/21
    X1311/41/21
    下载: 导出CSV

    Table  7.   Judgement matrix for evaluation of ecological pressure indicators in Pingquan City

    TypologyX14X15X16X17
    X141
    X1511
    X161/41/21
    X171/41/21/61
    下载: 导出CSV

    Table  8.   Weights of ecological vulnerability evaluation indicators in Pingquan City (wj is the comprehensive weight; w1j is the weight calculated by PCA; w2j is the weight obtained by AHP)

    Typology W1j W2j Wj Typology W1j W2j Wj
    Ecological sensitivity 0.197 0.655 0.416 Ecological resilience 0.690 0.211 0.442
    Geo-construction (X1) 0.1 0.349 0.216 Vegetation NPP (X10) 0.098 0.387 0.21
    Elevation (X2) 0.051 0.101 0.083 Soil type (X11) 0.425 0.282 0.373
    Altitude (X3) 0.001 0.125 0.013 Soil nutrient synthesis (X12) 0.15 0.175 0.174
    Annual rainfall (X4) 0.215 0.086 0.157 Ecological richness (X13) 0.327 0.156 0.243
    Average annual temperature (X5) 0.152 0.095 0.139 Ecological pressure 0.113 0.134 0.142
    Dryness index (X6) 0.157 0.085 0.134 Population density (X14) 0.252 0.4 0.335
    Vegetation cover (X7) 0.08 0.07 0.087 GDP (X15) 0.13 0.291 0.205
    Soil erosion factor (X8) 0.163 0.061 0.115 Food crop production (X16) 0.405 0.217 0.313
    Landscape fragmentation (X9) 0.081 0.028 0.055 Gross output value of agriculture, forestry, livestock and fisheries (X17) 0.213 0.092 0.148
    下载: 导出CSV

    Table  9.   Area ratio of different vulnerability classes of EVI in Pingquan City

    Typology
    Area (km2) 500.91 783.60 680.92 755.50 433.36
    Area ratio (%) 16 25 21 24 14
    下载: 导出CSV

    Table  10.   Ratio of EVI to area of each element in different watersheds in Pingquan region

    Basin Ecological Vulnerability (%) Ecological sensitivity (%)
    B120.2934.3423.1011.5510.7223.8022.4238.4115.260.11
    B25.8022.6017.6839.3814.530.0124.4043.9426.585.08
    B30.0010.7129.8129.8529.630.000.2118.3434.1647.29
    B411.8031.8526.9617.0412.3616.4132.4621.6828.930.53
    B556.603.878.2131.270.066.8014.7153.0125.490.00
    BasinEcological resilience (%)Ecological pressure (%)
    B17.8836.4121.4313.1621.129.6427.3021.9139.401.75
    B23.0518.7916.6521.2640.2635.1841.4222.700.620.09
    B30.9757.914.432.4634.220.000.1839.820.0859.92
    B40.0038.6233.130.2228.030.0050.5025.4024.100.00
    B554.155.290.0640.430.070.4599.100.190.260.00
    下载: 导出CSV

    Table  11.   Detection results of factors in Pingquan area

    Indicator q value Indicator q Value Indicator q Value
    Geo-construction (X1) 0.123 Vegetation cover (X7) 0.014 Ecological richness (X13) 0.120
    Elevation (X2) 0.083 Soil erosion factor (X8) 0.188 Population density (X14) 0.027
    Altitude (X3) 0.248 Landscape fragmentation (X9) 0.084 GDP (X15) 0.051
    Annual rainfall (X4) 0.105 Vegetation NPP (X10) 0.025 Food crop production (X16) 0.084
    Average annual temperature (X5) 0.220 Soil type (X11) 0.543 Gross output value of agriculture, forestry, livestock and fisheries (X17) 0.070
    Dryness index (X6) 0.040 Soil nutrient synthesis (X12) 0.035
    下载: 导出CSV
  • Cui C. 2012. The study of ecological environment evolution and countermeasures in source area of the Three Rivers. In Proceedings of the 5th International Yellow River Forum on Ensuring Water Right of the River's Demand and Healthy River Basin maintenance, Minist Water Resources, Yellow River Conservancy Commiss, Zhengzhou, China, 24–28 September.
    De Lange HJ, Sala S, Vighi M, et al. 2010. Ecological vulnerability in risk assessment—A review and perspectives. Science of the Total Environment, 408(18): 3871−3879. DOI: 10.1016/j.scitotenv.2009.11.009.
    Fan ZW, Liu MS, Shen WQ, et al. 2009. GIS-based assessment on eco-vulnerability of Jiangxi Province. In 2009 International Conference on Environmental Science and Information Application Technology (Vol. 3, pp. 426–431). IEEE. DOI: 10.1109/ESIAT.2009.321.
    Gao Y, Zhang H. 2018. The study of ecological environment fragility based on remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 46, 793–799. DOI: 10.1007/s12524-018-0759-1.
    Hou K, Li X, Wang J, et al. 2016. Evaluating ecological vulnerability using the GIS and Analytic Hierarchy Process (AHP) Method in Yan'an, China. Polish Journal of Environmental Studies, 25(2). DOI: 10.15244/pjoes/61312.
    Hou K, Li X, Zhang J. 2015. GIS analysis of changes in ecological vulnerability using a SPCA model in the Loess plateau of Northern Shaanxi, China. International Journal of Environmental Research and Public Health, 12(4): 4292−4305. DOI: 10.3390/ijerph120404292.
    Hu X, Ma C, Huang P, et al. 2021. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection–A case of Weifang City, China. Ecological Indicators, 125: 107464. DOI: 10.1016/j.ecolind.2021.107464.
    Ippolito A, Sala S, Faber JH, et al. 2010. Ecological vulnerability analysis: A river basin case study. The Science of the Total Environment 408 (18): 3880–3890. DOI: 10.1016/j.scitotenv.2009.10.002.
    Jiang W, Deng L, Chen L, et al. 2009. Risk assessment and validation of flood disaster based on fuzzy mathematics. Progress in Natural Science, 19(10): 1419−1425. DOI: 10.1016/j.pnsc.2008.12.010.
    Lan G, Jiang X, Xu D, et al. 2023. Ecological vulnerability assessment based on remote sensing ecological index (RSEI): A case of Zhongxian County, Chongqing. Frontiers in Environmental Science, 10: 1074376. DOI: 10.3389/fenvs.2022.1074376.
    Leitao AB, Ahern J, 2002. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning, 59(2): 65–93. DOI: 10.1016/S0169-2046(02)00005-1.
    Li A, Wang A, Liang S, et al. 2006. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS—A case study in the upper reaches of Minjiang River, China. Ecological Modelling, 192(1-2): 175−187. DOI: 10.1016/j.ecolmodel.2005.07.005.
    Li AN, Wang AS, He XR, et al. 2006. Integrated evaluation model for eco-environmental quality in mountainous region Based on Remote Sensing and GIS. Wuhan University Journal of Natural Sciences, 11(4): 969−976. DOI: 10.1007/BF02830196.
    Li L, Shi ZH, Yin W, et al. 2009. A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China. Ecological Modelling, 220(23): 3439−3447. DOI: 10.1016/j.ecolmodel.2009.09.005.
    Li Y, Huang S, 2015. Landscape ecological risk responses to land use change in the Luanhe River Basin, China. Sustainability, 7(12): 16631–16652. DOI: 10.3390/su71215835.
    Liu JY, Nie HF, Xu L, et al. 2025. Assessment of ecological geological vulnerability in Mu Us Sandy Land based on GIS and suggestions of ecological protection and restoration. China Geology, 8(1): 117−140. DOI:10.31035/ cg20230027.
    Luo M, Jia X, Zhao Y, et al. 2024. Ecological vulnerability assessment and its driving force based on ecological zoning in the Loess Plateau, China. Ecological Indicators, 159: 111658. DOI: 10.1016/j.ecolind.2024.111658.
    Qiu PH, Xu XJ, Xie GZ, et al. 2007. Analysis of the ecological vulnerability of the western Hainan Island based on its landscape pattern and ecosystem sensitivity. Acta Ecologica Sinica, 27(4): 1257−1264. DOI: 10.1016/S1872-2032(07)60026-2.
    Sahoo S, Dhar A, Kar A. 2016. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model. Environmental Impact Assessment Review, 56: 145−154. DOI: 10.1016/j.eiar.2015.10.002.
    Shan C, Dong Z, Lu D, et al. 2021. Study on river health assessment based on a fuzzy matter-element extension model. Ecological Indicators, 127: 107742. DOI: 10.1016/j.ecolind.2021.107742.
    Shi JT, Liu JJ, Zhang JC, et al. 2024. Analysis of soil heavy metal influencing factors and sources in typical small watersheds in shallow mountainous area. Geophysical and Geochemical Exploration, 48(3): 834−846. (in Chinese) DOI: 10.11720/wtyht.2024.1270.
    Wang XD, Zhang XH, Gao P. 2010. A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. Journal of Environmental Management, 91(10): 1981−1990. DOI: 10.1016/j.jenvman.2010.05.006.
    Wang Z, Su Y. 2002. Analysis of Eco-environment vulnerability characteristics of Hanzhong City, near the water source midway along the route of the south-to-north water transfer project, China. Acta Ecologica Sinica, 38(02): 432–442. DOI: 10.5846/stxb201609261944.
    Wu C, Liu G, Huang C, et al. 2018. Ecological vulnerability assessment based on fuzzy analytical method and analytic hierarchy process in Yellow River Delta. International Journal of Environmental Research and Public Health, 15(5): 855. DOI: 10.3390/ijerph15050855.
    Xu W, Dong Z, Li D, et al. 2017. River health evaluation based on the Fuzzy matter-element extension assessment model. Polish Journal of Environmental Studies, 26(3). DOI: 10.15244/pjoes/67369.
    Xu X, Yang H, Yang D, et al. 2013. Assessing the impacts of climate variability and human activities on annual runoff in the Luan River basin, China. Hydrology Research, 44(5): 940−952. DOI: 10.2166/nh.2013.144.
    Xue LQ, Wang J, Zhang L, et al. 2019. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Science of the Total Environment, 649: 876−888. DOI: 10.1016/j.scitotenv.2018.08.321.
    Yang L, Cheng YP, Wen XR, et al. 2024. Development, hotspots and trend directions of groundwater numerical simulation: A bibliometric and visualization analysis. Journal of Groundwater Science and Engineering, 12(4): 411−427. DOI: 10.26599/JGSE.2024.9280031.
    Zhang F, Liu X, Zhang J, et al. 2017. Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China. Ecological Modelling, 349: 41−50. DOI: 10.1016/j.ecolmodel.2017.01.016.
    Zhang H, Lin X, Yu G, et al. 2009. Ecological vulnerability assessment in the middle and lower reaches of the Hanjiang river basin. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering: 1-4. DOI: 10.1109/ICBBE.2009.5162677.
    Zhang XL, Yu WB, Cai HS, et al. 2018. Review of the evaluation methods of regional eco-environmental vulnerability. Acta Ecologica Sinica, 38: 5970−5981. DOI: 10.5846/stxb201708211502.
    Zhang XQ, Wang LK, Fu XS, et al. 2017. Ecological vulnerability assessment based on PSSR in Yellow River Delta. Journal of Cleaner Production, 167: 1106−1111. DOI: 10.1016/j.jclepro.2017.04.106.
    Zhang XY, Liu K, Wang S, et al. 2022. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecological Indicators, 135: 108586. DOI: 10.1016/j.ecolind.2022.108586.
    Zhao Y, Liu L, Kang S, et al. 2021. Quantitative analysis of factors influencing spatial distribution of soil erosion based on geo-detector model under diverse geomorphological types. Land, 10(6): 604. DOI: 10.3390/land10060604.
    Zou T, Yoshino K, 2017. Environmental vulnerability evaluation using a spatial principal components approach in the Daxing'anling region, China. Ecological Indicators, 78, 405–415. DOI: 10.1016/j.ecolind.2017.03.039.
    Zou T, Chang Y, Chen P, et al. 2021. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018. Ecological Indicators, 133: 108429. DOI: 10.1016/j.ecolind.2021.108429.
  • [1] Hayder H. Kareem, Shahla Abdulqader Nassrullah2025:  Impact of climate changes on Arizona State precipitation patterns using high-resolution climatic gridded datasets, Journal of Groundwater Science and Engineering, 13, 34-46. doi: 10.26599/JGSE.2025.9280037
    [2] Parvaiz Ahmad Ganie, Ravindra Posti, Garima, Kishor Kunal, Nityanand Pandey, Pramod Kumar Pandey2024:  Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques, Journal of Groundwater Science and Engineering, 12, 360-386. doi: 10.26599/JGSE.2024.9280028
    [3] Hanane Mebarki, Noureddine Maref, Mohammed El-Amine Dris2024:  Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed, Journal of Groundwater Science and Engineering, 12, 161-177. doi: 10.26599/JGSE.2024.9280013
    [4] Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili2023:  Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262. doi: 10.26599/JGSE.2023.9280021
    [5] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku2023:  Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236. doi: 10.26599/JGSE.2023.9280019
    [6] Abebe Wondmagegn Taye2022:  Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222. doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [7] Yang Hui-feng, Meng Rui-fang, Bao Xi-lin, Cao Wen-geng, Li Ze-yan, Xu Bu-yun2022:  Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain, Journal of Groundwater Science and Engineering, 10, 113-127. doi: 10.19637/j.cnki.2305-7068.2022.02.002
    [8] Niway Wondesen Fikade, Molla Dagnachew Daniel, Lohani Tarun Kumar2022:  Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004
    [9] ZHOU Hao, WU Yong, HUANG Feng, TANG Xue-fang2021:  Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [10] Yuan Ruo-xi, Wang Gui-ling, Liu Feng, Zhang Wei, Wang Wan-li, Cao Sheng-wei2021:  Evaluation of shallow geothermal energy resources in the Beijing-Tianjin-Hebei Plain based on land use, Journal of Groundwater Science and Engineering, 9, 129-139. doi: 10.19637/j.cnki.2305-7068.2021.02.005
    [11] Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir2021:  Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [12] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [13] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani2020:  Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [14] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR2020:  Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179. doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [15] Alhassan H Ismai, Muntasir A Shareef, Wesam Mahmood2018:  Hydrochemical characterization of groundwater in Balad district, Salah Al-Din Governorate, Iraq, Journal of Groundwater Science and Engineering, 6, 306-322. doi: 10.19637/j.cnki.2305-7068.2018.04.006
    [16] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui2017:  Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [17] WANG Ji-ning, MENG Yong-hui2016:  Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [18] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng2015:  Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [19] LIU Jun, CHENG Jian-mei, JIANG Fang-yuan2015:  Methodological study of coastal geological hazard assessment based on GIS, Journal of Groundwater Science and Engineering, 3, 77-85.
    [20] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang2013:  Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
  • 加载中
图(5) / 表ll (11)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  40
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-16
  • 录用日期:  2025-04-12
  • 网络出版日期:  2025-06-27
  • 刊出日期:  2025-08-08

目录

    /

    返回文章
    返回