• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Climate change trends and adaptation strategies in Southern Regions of Iraq

Laheab A Al-Maliki Rana Abd Al Hadi Mukheef Khaled El-Tawil Nadhir Al-Ansari

AL-MALIKI Laheab A., Mukheef RAAH, El-Tawil K, et al. 2025. Climate change trends and adaptation strategies in Southern Regions of Iraq. Journal of Groundwater Science and Engineering, 13(4): 449-468 doi:  10.26599/JGSE.2025.9280065
Citation: AL-MALIKI Laheab A., Mukheef RAAH, El-Tawil K, et al. 2025. Climate change trends and adaptation strategies in Southern Regions of Iraq. Journal of Groundwater Science and Engineering, 13(4): 449-468 doi:  10.26599/JGSE.2025.9280065

doi: 10.26599/JGSE.2025.9280065

Climate change trends and adaptation strategies in Southern Regions of Iraq

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The study area, location map and the selected stations

    Figure  2.  Geological map of Iraq (Al-Ansari et al. 2021)

    Figure  3.  Groundwater movement in the Southeast part of Iraq (Al-Bahrani et al. 2022)

    Figure  4.  The monthly mean and standard deviation

    Figure  5.  The coefficient of determination (R2) between the observed and the simulated data for rainfall, maximum and minimum temperature

    Figure  6.  Average maximum temperatures for observed and simulated data

    Figure  7.  Average minimum temperatures for observed and simulated data

    Figure  8.  Comparison of the minimum temperature for the three IPCC models

    Figure  9.  Comparison of the maximum temperature for the three IPCC models

    Figure  10.  Annual minimum temperature difference between the simulated values for the three periods and the observed value

    Figure  11.  Annual maximum temperature difference between the simulated values for the three periods and the observed value

    Figure  12.  Average Rainfall for Observed and Simulated Data

    Figure  13.  Difference Between the Simulated and the Observed Seasonal Rainfall.

    Figure  14.  Alterations in the forecasted annual temperatures in the future of the four stations

    Figure  15.  (a) The spatial distribution of projected temperature changes relative to the historical baseline (1990–2021), and (b) the projected average temperatures under RCP 4.5 and RCP 8.5 scenarios for the future (2021–2080)

    Table  1.   The selected stations

    Station Longitude Latitude Elevation
    Basra 47.78 30.52 2.0
    Thi Qar 46.23 31.02 5.0
    Muthanah 45.27 31.27 11.0
    Messan 47.17 31.83 9.0
    下载: 导出CSV

    Table  2.   The selected GCMs from the Intergovernmental Panel on Climate Change (IPCC) Models

    No. GCM Research center RCP
    MICRO5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan 4.5, 8.5
    HadGEM2-ES Met Office Hadley Center, United Kingdom 4.5, 8.5
    EC-Earth European Community Earth-System Model 4.5, 8.5
    下载: 导出CSV

    Table  3.   Assessment of wet and dry Seasons for the Four Stations

    Season Wet/dry N K–S P value Assessment
    Messan Station
    DJF Wet 12 0.010 1.000 Perfect
    DJF Dry 12 0.058 1.000 Perfect
    MAM Wet 12 0.050 1.000 Perfect
    MAM Dry 12 0.265 0.341 Poor
    JJA Wet 12 0.000 1.000 Perfect
    JJA Dry 12 0.305 0.193 Poor
    SON Wet 12 0.092 1.000 Perfect
    SON Dry 12 0.083 1.000 Perfect
    Thi-Qar Station
    DJF Wet 12 0.037 1.000 Perfect
    DJF Dry 12 0.055 1.000 Perfect
    MAM Wet 12 0.025 1.000 Perfect
    MAM Dry 12 0.207 0.655 Good
    JJA Wet 12 0.130 0.984 Very good
    JJA Dry 12 0.435 0.017 Poor
    SON Wet 12 0.018 1.000 Perfect
    SON Dry 12 0.098 1.000 Perfect
    Basrah Station
    DJF Wet 12 0.032 1.000 Perfect
    DJF Dry 12 0.065 1.000 Perfect
    MAM Wet 12 0.045 1.000 Perfect
    MAM Dry 12 0.185 0.783 Very good
    JJA Wet 12 0.087 1.000 Perfect
    JJA Dry 12 0.566 0.001 Poor
    SON Wet 12 0.089 1.000 Perfect
    SON Dry 12 0.112 0.997 Very good
    Muthanah Station
    DJF Wet 12 0.062 1.000 Perfect
    DJF Dry 12 0.015 1.000 Perfect
    MAM Wet 12 0.162 0.897 Very good
    MAM Dry 12 0.297 0.218 Poor
    JJA Wet 12 0.174 0.842 Very good
    JJA Dry 12 0.261 0.359 Poor
    SON Wet 12 0.043 1.000 Perfect
    SON Dry 12 0.156 0.920 Very good
    下载: 导出CSV

    Table  4.   K-S (Kolmogorov-Smirnov) Test for the distributions of daily rainfall for the four studied stations

    Season N K–S P value Assessment
    Mesan Station
    J 12 0.065 1.000 Perfect
    F 12 0.130 0.984 Very good
    M 12 0.077 1.000 Perfect
    A 12 0.094 1.000 Perfect
    M 12 0.223 0.560 Good
    J 12 0.652 0.000 Poor
    J 12 No precipitation
    A 12 No precipitation
    S 12 1.000 0.000 Poor
    O 12 0.219 0.584 Good
    N 12 0.130 0.984 Very good
    D 12 0.204 0.673 Good
    Thi-Qar Station
    J 12 0.142 0.962 Very good
    F 12 0.124 0.990 Very good
    M 12 0.138 0.971 Very good
    A 12 0.135 0.976 Very good
    M 12 0.063 1.000 Perfect
    J 12 0.348 0.096 Poor
    J 12 No precipitation
    A 12 No precipitation
    S 12 0.478 0.006 Poor
    O 12 0.146 0.952 Very good
    N 12 0.134 0.978 Very good
    D 12 0.235 0.492 Good
    Basrah Station
    J 12 0.055 1.000 Perfect
    F 12 0.085 1.000 Perfect
    M 12 0.160 0.905 Very good
    A 12 0.043 1.000 Perfect
    M 12 0.059 1.000 Perfect
    J 12 0.653 0.000 Poor
    J 12 No precipitation
    A 12 No precipitation
    S 12 No precipitation
    O 12 0.368 0.067 Poor
    N 12 0.147 0.949 Very good
    D 12 0.070 1.000 Perfect
    Muthanah Station
    J 12 0.156 0.920 Very good
    F 12 0.075 1.000 Perfect
    M 12 0.104 0.999 Very good
    A 12 0.134 0.978 Very good
    M 12 0.055 1.000 Perfect
    J 12 0.304 0.196 Poor
    J 12 No precipitation
    A 12 No precipitation
    S 12 1.000 0.000 Poor
    O 12 0.154 0.927 Very good
    N 12 0.133 0.979 Very good
    D 12 0.056 1.000 Perfect
    下载: 导出CSV

    Table  5.   Statistical analysis of the model calibration and validation over the observation period (1990–2020)

    Station Climate variable R2 RMSE
    Muthanah Rainfall 0.9526 2.19823
    Tmax 0.9994 0.286138
    Tmin 0.9996 0.1904
    Basrah Rainfall 0.9725 2.3078
    Tmax 0.9994 0.2747
    Tmin 0.9997 0.246813
    Thi Qar Rainfall 0.9188 2.0364
    Tmax 0.9995 0.2755
    Tmin 0.9994 0.2243
    Messan Rainfall 0.9537 2.7774
    Tmax 0.9994 0.2747
    Tmin 0.9992 0.2745
    下载: 导出CSV
  • Adamo N, Al-Ansari N, Sissakian V, et al. 2022. Climate change: Droughts and increasing desertification in the Middle East, with special reference to Iraq. Engineering, 14(07): 235−273. DOI:  10.4236/eng.2022.147021.
    Agyakwah W, Lin YL. 2021. Generation and enhancement mechanisms for extreme orographic rainfall associated with Typhoon Morakot (2009) over the Central Mountain Range of Taiwan. Atmospheric Research, 247: 105160. DOI:  10.1016/j.atmosres.2020.105160.
    Al-Maliki LA, Al-Mamoori SK, Al-Ansari N, et al. 2022. Climate change impact on water resources of Iraq (a review of literature). IOP Conference Series, Earth and Environmental Science, 1120(1): 012025. DOI:  10.1088/1755-1315/1120/1/012025.
    Al-Bahrani HS, Al-Rammahi AH, Al-Mamoori SK, et al. 2022. Groundwater detection and classification using remote sensing and GIS in Najaf, Iraq. Groundwater for Sustainable Development, 19: 100838. DOI:  10.1016/j.gsd.2022.100838.
    Al-Maliki LA, Al-Mamoori SK, Jasim IA, et al. 2022. Perception of climate change effects on water resources: Iraqi undergraduates as a case study. Arabian Journal of Geosciences, 15(6): 503. DOI:  10.1007/s12517-022-09695-y.
    Al-Ansari N, Saleh S, Abdullah T, et al. 2021. Quality of surface water and groundwater in Iraq. Earth Sciences and Geotechnical Engineering, 11(2): 161−199. DOI:  10.47260/jesge/1124.
    Attogouinon A, Lawin AE, Deliège JF. 2020. Evaluation of general circulation models over the upper Ouémé River Basin in the Republic of Benin. Hydrology, 7(1): 11. DOI:  10.3390/hydrology7010011.
    Change IPOC. 2007. Climate change 2007: The physical science basis. Agenda, 6(07): 333.
    Daoudy M, Al-Saidi M, Al Manji A, et al. 2024. Troubled waters in conflict and a changing climate: Transboundary Basins across the Middle East and North Africa. Carnegie Endowment for International Peace.
    Demory ME, Berthou S, Sørland SL, et al. 2020. Can high-resolution GCMs reach the level of information provided by 12–50 km CORDEX RCMs in terms of daily precipitation distribution? Geoscientific Model Development Discussions, 1-33.
    Francis D, Fonseca R. 2024. Recent and projected changes in climate patterns in the Middle East and North Africa (MENA) region. Scientific Reports, 14(1): 10279. DOI:  10.1038/s41598-024-60976-w.
    Han Z, Shi Y, Wu J, et al. 2019. Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijing–Tianjin–Hebei Region of China. Journal of Applied Meteorology and Climatology, 58(11): 2387-2403.
    Hashim BM, Sultan MA, Al Maliki A, et al. 2020. Estimation of greenhouse gases emitted from energy industry (Oil refining and electricity generation) in Iraq using IPCC methodology. Atmosphere, 11(6): 662. DOI:  10.3390/atmos11060662.
    Hassan WH, Nile BK, Kadhim ZK, et al. 2023. Trends, forecasting and adaptation strategies of climate change in the middle and west regions of Iraq. SN Applied Sciences, 5(12): 312. DOI:  10.1007/s42452-023-05544-z.
    Jahangir MH, Haghighi P, Danehkar S. 2022. Downscaling climate parameters in Fars province, using models of the fifth report and RCP scenarios. Ecological Informatics, 68: 101558. DOI:  10.1016/j.ecoinf.2022.101558.
    Jasim IA, Al-Maliki LA, Al-Mamoori SK. 2022. Water corridors management: A case study from Iraq. International Journal of River Basin Management, 1-11. DOI:  10.1080/15715124.2022.2079662.
    Khalaf RM, Hussein HH, Hassan WH, et al. 2022. Projections of precipitation and temperature in Southern Iraq using a LARS-WG Stochastic weather generator. Physics and Chemistry of the Earth, Parts A/B/C, 128: 103224.
    Knutti R, Furrer R, Tebaldi C, et al. 2010. Challenges in combining projections from multiple climate models. Journal of Climate, 23(10): 2739−2758. DOI:  10.1175/2009JCLI3361.1.
    Lun Y, Liu L, Cheng L, et al. 2021. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. International Journal of Climatology, 41(7): 3994−4018. DOI:  10.1002/joc.7055.
    McSweeney CF, Jones RG, Lee RW. et al. 2015. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn, 44: 3237–3260. DOI: 10.1007/s00382-014-2418-8
    Mohammad OI, Laheab A, Al-Maliki. 2014. Evaluation of suitability of drainage water of Al-Hussainia sector (Kut-Iraq) for irrigation. Wasit Journal of Engineering Sciences, 2(1): 30−45. DOI:  10.31185/ejuow.Vol2.Iss1.22.
    Mohammed ZM, Hassan WH. 2022. Climate change and the projection of future temperature and precipitation in southern Iraq using a LARS-WG model. Modeling Earth Systems and Environment, 8(3): 4205−4218. DOI:  10.1007/s40808-022-01358-x.
    Namdar R, Karami E, Keshavarz M. 2021. Climate change and vulnerability: The case of MENA countries. ISPRS International Journal of Geo-Information, 10(11): 794. DOI:  10.3390/ijgi10110794.
    Nolan P, Flanagan J. 2020. High-resolution climate projections for Ireland–a multi-model ensemble approach. Environmental Protection Agency, 978−991. DOI:  10.13140/RG.2.2.28360.14084.
    Portoghese I, Vurro M, López A. 2015. Assessing the impacts of climate change on water resources: Experiences from the Mediterranean Region.
    Qiu Y, Feng J, Yan Z, et al. 2022. High-resolution dynamical downscaling for regional climate projection in Central Asia based on bias-corrected multiple GCMs. Climate Dynamics, 58(3): 777−791.
    Smirnov O, Lahav G, Orbell J, et al. 2023. Climate change, drought, and potential environmental migration flows under different policy scenarios. International Migration Review, 57(1): 36−67. DOI:  10.1177/01979183221079850.
    Tebaldi C, Knutti R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857): 2053-2075. DOI:  10.1098/rsta.2007.2076.
    Walton DB, Berg N, Pierce D, et al. 2020. Understanding differences in California Climate Projections produced by dynamical and statistical downscaling. Journal of Geophysical Research: Atmospheres, 125.
    Wang JL, Moore JC, Zhao L, et al. 2022. Regional dynamical and statistical downscaling temperature, humidity and wind speed for the Beijing region under stratospheric aerosol injection geoengineering. Earth System Dynamics, 13(4): 1625-1640.
    Wilcke RAI, Bärring L. 2016. Selecting regional climate scenarios for impact modelling studies. Environmental Modelling & Software, 78: 191−201. DOI:  10.1016/j.envsoft.2016.01.002.
    Wu J, Han Z, Li R, et al. 2020. Changes of extreme climate events and related risk exposures in Huang‐Huai‐Hai river basin under 1. 5–2°C global warming targets based on high resolution combined dynamical and statistical downscaling dataset. International Journal of Climatology, 41: 1383−1401.
    Yildiz S, Islam HMT, Rashid T, et al. 2024. Exploring climate change effects on drought patterns in Bangladesh using Bias-Corrected CMIP6 GCMs. Earth Systems and Environment, 8(1): 21−43. DOI:  10.1007/s41748-023-00362-0.
  • [1] Hayder H. Kareem, Shahla Abdulqader Nassrullah2025:  Impact of climate changes on Arizona State precipitation patterns using high-resolution climatic gridded datasets, Journal of Groundwater Science and Engineering, 13, 34-46. doi: 10.26599/JGSE.2025.9280037
    [2] Sulistiani, Rachmat Fajar Lubis, I Putu Santikayasa, Muh. Taufik, Gumilar Utamas Nugraha2025:  Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia, Journal of Groundwater Science and Engineering, 13, 352-370. doi: 10.26599/JGSE.2025.9280059
    [3] Hanane Mebarki, Noureddine Maref, Mohammed El-Amine Dris2024:  Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed, Journal of Groundwater Science and Engineering, 12, 161-177. doi: 10.26599/JGSE.2024.9280013
    [4] Shu-hong Song, Zhen-long Nie, Xin-xin Geng, Xue Shen, Zhe Wang, Pu-cheng Zhu2023:  Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin, Northwest China: A case study of the Xiying River, Journal of Groundwater Science and Engineering, 11, 89-96. doi: 10.26599/JGSE.2023.9280009
    [5] Muhammad Irfan, Sri Safrina, Erry Koriyanti, Netty Kurniawati, Khairul Saleh, Iskhaq Iskandar2023:  Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia, Journal of Groundwater Science and Engineering, 11, 81-88. doi: 10.26599/JGSE.2023.9280008
    [6] Liang Zhu, Ming-nan Yang, Jing-tao Liu, Yu-xi Zhang, Xi Chen, Bing Zhou2022:  Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects, Journal of Groundwater Science and Engineering, 10, 322-334. doi: 10.19637/j.cnki.2305-7068.2022.04.002
    [7] Demisse Habtamu Semunigus, Ayalew Abebe Temesgen, Ayana Melkamu Teshome, Lohani Tarun Kumar2021:  Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia, Journal of Groundwater Science and Engineering, 9, 317-325. doi: 10.19637/j.cnki.2305-7068.2021.04.005
    [8] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA2020:  Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [9] ZHU Yu-chen, ZHANG Yi-long, HAO Qi-chen2017:  Assessment of shallow groundwater vulnerability in Dahei River Plain based on AHP and DRASTIC, Journal of Groundwater Science and Engineering, 5, 266-277.
    [10] SHANG Man-ting, LIU Pei-gui, LEI Chao, LIU Ming-chao, WU Liang2017:  Effect of climate change on the trends of evaporation of phreatic water from bare soil in Huaibei Plain, China, Journal of Groundwater Science and Engineering, 5, 213-221.
    [11] Khongsab Somphone, OunakoneKone Xayviliya2017:  Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [12] Ramasamy Jayakumar, Eunhee Lee2017:  Climate change and groundwater conditions in the Mekong Region–A review, Journal of Groundwater Science and Engineering, 5, 14-30.
    [13] Duong D Bui, Nghia C Nguyen, Nuong T Bui, Anh T T Le, Dao T Le2017:  Climate change and groundwater resources in Mekong Delta, Vietnam, Journal of Groundwater Science and Engineering, 5, 76-90.
    [14] SRISUK Kriengsak, NETTASANA Tussanee2017:  Climate change and groundwater resources in Thailand, Journal of Groundwater Science and Engineering, 5, 67-75.
    [15] Than Zaw, Maung Maung Than2017:  Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66.
    [16] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng2017:  Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [17] Chamroeun SOK, Sokuntheara CHOUP2017:  Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [18] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU2014:  Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [19] CHEN Qu2014:  Anticipatory Adaptation Approaches to Climate Change--A Review and Discussion of Southern Australia’s Sustainable Water Management and Its Strategies and Shortcomings, Journal of Groundwater Science and Engineering, 2, 54-61.
    [20] Cheng Yanpei, Ma Renhui2013:  Analysis of Water Resource Demands: Based on the Hydrological Unit, Journal of Groundwater Science and Engineering, 1, 48-59.
  • 加载中
图(15) / 表ll (5)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  28
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-21
  • 录用日期:  2025-09-03
  • 网络出版日期:  2025-10-10
  • 刊出日期:  2025-12-15

目录

    /

    返回文章
    返回