• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the strength deterioration characteristics and microscopic mechanisms of moraine soil under freeze-thaw cycles

Peng-fei Wang Ming-li Li Ming Chang Jun-lin Jiang Fan Yang Zhi-qiang Zuo

Wang PF, Li ML, Chang M, et al. 2026. Study on the strength deterioration characteristics and microscopic mechanisms of moraine soil under freeze-thaw cycles. Journal of Groundwater Science and Engineering, 14(1): 15-31 doi:  10.26599/JGSE.2026.9280068
Citation: Wang PF, Li ML, Chang M, et al. 2026. Study on the strength deterioration characteristics and microscopic mechanisms of moraine soil under freeze-thaw cycles. Journal of Groundwater Science and Engineering, 14(1): 15-31 doi:  10.26599/JGSE.2026.9280068

doi: 10.26599/JGSE.2026.9280068

Study on the strength deterioration characteristics and microscopic mechanisms of moraine soil under freeze-thaw cycles

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The gradation curve of moraine soil

    Figure  2.  The flowchart diagram of the experimental procedure

    Figure  3.  Microstructure and mineral composition of the moraine soil. (a) SEM image of the soil sample (N=0 cycles, magnification: 200×); (b) XRD diffraction pattern identifying the primary mineral constituents, including quartz (Q), albite (A), orthoclase (O), hornblende (H), and muscovite (M)

    Figure  4.  The stress-strain curve of moraine under F-T cycle (a. $ {\sigma _{\text{3}}} = $100 kpa, $ w = $10.7%, b. $ {\sigma _{\text{3}}} = $100 kpa, $ w = $14.1%, c. $ {\sigma _{\text{3}}} = $100 kpa, $ w = $18%, d. $ {\sigma _{\text{3}}} = $150 kpa, $ w = $10.7%, e. $ {\sigma _{\text{3}}} = $150 kpa, $ w = $14.1%, f. $ {\sigma _{\text{3}}} = $150 kpa, $ w = $18%, g. $ {\sigma _{\text{3}}} = $200 kpa, $ w = $10.7%, h. $ {\sigma _{\text{3}}} = $200 kpa, $ w = $14.1%, i. $ {\sigma _{\text{3}}} = $200 kpa, $ w = $18%)

    Figure  5.  The relationship between elastic modulus of moraine soil and number of F-T cycles (a. $ {\sigma _{\text{3}}} = $100 kpa, b. $ {\sigma _{\text{3}}} = $150 kpa, c. $ {\sigma _{\text{3}}} = $200 kpa, d. $ w = $10.7%, e. $ w = $14.1%, f. $ w = $18%)

    Figure  6.  The relationship between shear strength of moraine soil and number of F-T cycles (a. $ {\sigma _{\text{3}}} = $100 kpa, b. $ {\sigma _{\text{3}}} = $150 kpa, c. $ {\sigma _{\text{3}}} = $200 kpa, d. $ w = $10.7%, e. $ w = $14.1%, f. $ w = $18%)

    Figure  7.  The relationship curve between the elastic modulus and the shear strength

    Figure  8.  The Relationship curve between the number of F-T cycles and cohesion

    Figure  9.  The relationship curve between the number of F-T cycles and the angle of internal friction

    Figure  10.  The surface of relations between the number of F-T cycles and the cohesion force

    Figure  11.  The multi-parameter coupling model for mechanical characteristics of moraine soil (a. the relationship surface among shear strength, number of F-T cycles and initial moisture content, b. the relationship surface among elastic modulus, the number of F-T cycles and initial moisture content, c. the relationship surface among shear strength, number of F-T cycles and confining pressure, d. the relationship surface among elastic modulus, number of F-T cycles and confining pressure)

    Figure  12.  The microstructure of moraine soil under different F-T cycles (a. N=0 and the magnification of 100×, b. N=0 and the magnification of 200×, c. N=10 and the magnification of 100×, d. N=10 and the magnification of 200×, e. N=20 and the magnification of 100×, f. N=20 and the magnification of 200×)

    Figure  13.  The pore number ratio distribution diagram (a. N=0, b. N=2, c. N=5, d. N=10, e. N=15, f. N=20)

    Figure  14.  The aperture distribution diagram

    Table  1.   The basic physical parameters of moraine soil

    Dry density
    $ {\rho _d} $/(g/cm3)
    Unit weight
    $ \gamma $/(kN/m3)
    Optimum moisture
    content $ {w_o} $/(%)
    Maximum dry
    density $ {\rho _{d\max }} $/(g/cm3)
    Nonuniform
    coefficient $ {C_u} $
    Curvature
    coefficient $ {C_c} $
    1.7 26.1 14.1% 2.30 2.20 0.94
    下载: 导出CSV

    Table  2.   The experimental scheme

    Experiment name
    Moisture Content
    w/%
    Confining Pressure
    σ3/kPa
    Number of F-T Cycle N Number of Samples
    Consolidated undrained triaxial test (CU) 10.7
    14.1
    18

    100,150,200

    0,2,5,10,15,20

    162
    NMR Moisture Content w/% Number of F-T Cycle N Number of Samples
    10.7 0,2,5,10,15,20 18
    SEM Moisture Content w/% Magnification power Number of F-T Cycle N Number of Samples
    10.7 100×、200× 0,2,5,10,15,20 6
    下载: 导出CSV

    Table  3.   Quantitative analysis of microstructure from SEM images

    Number of F-T
    Cycles/N
    Porosity/% Average Pore
    Diameter/μm
    0 15.2 ± 0.8 8.5 ± 0.5
    10 22.7 ± 1.2 14.1 ± 0.7
    20 28.9 ± 1.5 18.6 ± 0.9
    下载: 导出CSV

    Table  4.   The pore classification table

    The pore
    classification
    Large pores Medium pores Small pores Micropores
    Size/μm >100 100–30 30–3 <3
    下载: 导出CSV

    Table  5.   Evolution of micro-pore structure parameters of moraine soil

    N Large-medium pore/% $ {D_f} $ $ {d_{avg}} $
    0 0.00 2.68±0.05 8.2±0.4
    20 59.55±2.1 2.31±0.06 21.5±1.1
    下载: 导出CSV
  • Allen SK, Zhang GQ, Wang WC, et al. 2019. Potentially dangerous glacial lakes across the Xizangan Plateau revealed using a large-scale automated assessment approach. Science Bulletin, 64(7): 435−445. DOI:  10.1016/j.scib.2019.03.011.
    Ashraf A, Naz R, Roohi R. 2012. Glacial lake outburst flood hazards in Hindukush, Karakoram and Himalayan Ranges of Pakistan: Implications and risk analysis. Geomatics, Natural Hazards and Risk, 3(2): 113−132. DOI:  10.1080/19475705.2011.615344.
    Chen NS, Wang Z, Tian SF, et al. 2019b. Study on debris flow process induced by moraine soil mass failure. Quaternary Sciences, 39(5): 1235−1245. (in Chinese)
    Chen Q, Guo XF. 2019c. Soil structure and in-site shear test of moraine soil near the Xingkang Bridge over the Daduhe River in Luding. Hydrogeology and Engineering Geology, 46(4): 126−133.
    Chen T. 2019a. Impacts of cyclic F-T on strength properties of coarse-grained soils and slope stability of mine dump. MS. Theis. Lanzhou. Lanzhou University of Technology.
    Cui P, Ge YG, Li SJ, et al. 2022. Scientific challenges in disaster risk reduction for the Sichuan–Xizang Railway. Engineering Geology, 309: 106837. DOI:  10.1016/j.enggeo.2022.106837.
    Fang XD, Huang RQ. 2013. Physical and mechanical properties of typical moraine soil on the Qinghai-Xizang Plateau. Journal of Engineering Geology, 21(1): 123−128. (In Chinese)
    Feng XL, Li ZR, Jiang MG, et al. 2024. Experimental study of soil erosion on moraine-consolidated slopes under heavy rainfall. Heliyon, 10(5): e26721. DOI:  10.1016/j.heliyon.2024.e26721.
    Gao B, Zhang JJ, Wang JC, et al. 2019. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Xizang. Hydrogeology and Engineering Geology, 46(5): 144−153.
    Guo XF, Cheng Q, Zhang LL, et al. 2022. Large-scale in situ tests for shear strength and creep behavior of moraine soil at the Dadu River bridge in Luding, China. International Journal of Geomechanics, 22(5): 04022053. DOI:  10.1061/(asce)gm.1943-5622.0002362.
    Guo XF, Xing XF, Wang ZH, et al. 2023. Compression characteristic and creep behavior of moraine soil at xingkang bridge, west Sichuan, China. Journal of Earth Science, 34(4): 1272−1279. DOI:  10.1007/s12583-022-1800-4.
    Han Y, Wang Q, Wang N, et al. 2018. Effect of freeze-thaw cycles on shear strength of saline soil. Cold Regions Science and Technology, 154: 42−53. DOI:  10.1016/j.coldregions.2018.06.002.
    Jiang Y, Lu XS, Liu ZM, et al. 2024. Experimental study on the engineering properties and failure mechanism of moraine in Southeast Xizang under freeze–thaw cycles conditions. Engineering Failure Analysis, 163: 108551. DOI:  10.1016/j.engfailanal.2024.108551.
    Klimeš J, Novotný J, Novotná I, et al. 2016. Landslides in moraines as triggers of glacial lake outburst floods: Example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides, 13(6): 1461−1477. DOI:  10.1007/s10346-016-0724-4.
    Lebourg T, Riss J, Pirard E. 2004. Influence of morphological characteristics of heterogeneous moraine formations on their mechanical behaviour using image and statistical analysis. Engineering Geology, 73(1−2): 37−50. DOI:  10.1016/j.enggeo.2003.11.004.
    Liu JK, Chang D, Yu QM. 2016. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Engineering Geology, 210: 23−32. DOI:  10.1016/j.enggeo.2016.05.019.
    Liu JK, Zhang JJ, Gao B, et al. 2019. An overview of glacial lake outburst flood in Xizang, China. Journal of Glaciology and Geocryology, 41(6): 1335−1347.
    Luo F, Liu EL, Zhu ZY. 2019. A strength criterion for frozen moraine soils. Cold Regions Science and Technology, 164: 102786. DOI:  10.1016/j.coldregions.2019.102786.
    Lv S, Wang N, Hu MJ, Shen JH. 2017. Current status, problems and future trends of the research on engineering properties of moraine soil. Journal of Engineering Geology, 19: 307−312.
    Neupane R, Chen HY, Cao CR. 2019. Review of moraine dam failure mechanism. Geomatics, Natural Hazards and Risk, 10(1): 1948−1966. DOI:  10.1080/19475705.2019.1652210.
    Palamakumbura R, Finlayson A, Ciurean R, et al. 2021. Geological and geomorphological influences on a recent debris flow event in the Ice-scoured Mountain Quaternary domain, western Scotland. Proceedings of the Geologists' Association, 132(4): 456−468. DOI:  10.1016/j.pgeola.2021.05.002.
    Pan L, Wei XL, Zhang YF, et al. 2017. Influence of initial water content on glacial debris flow triggering process. Journal of Soil and Water Conservation, 31(6): 116−122. (in Chinese) DOI:  10.13870/j.cnki.stbcxb.2017.06.020.
    Peng DL, Zhang LM, Jiang RC, et al. 2022. Initiation mechanisms and dynamics of a debris flow originated from debris-ice mixture slope failure in southeast Xizang, China. Engineering Geology, 307: 106783. DOI:  10.1016/j.enggeo.2022.106783.
    Qiu EX, He QL, Chen QL, et al. 2023. Influence of freeze–thaw cycles on mechanical properties of moraine soils. Transportation Geotechnics, 42: 101097. DOI:  10.1016/j.trgeo.2023.101097.
    Qu YP, Xiao J, Pan YW. 2018. Preliminary analysis on formation conditions of glacier debris flow in Southeast Xizang—a case of glacial debris flow in Tianmo Gully. Water Resources and Hydropower Engineering, 49(12): 177−184. (in Chinese) DOI:  10.13928/j.cnki.wrahe.2018.12.024.
    Shen YJ, Wei X, Zhang L, et al. 2022. Hydrothermal migration of moraine soil and the mechanism of ice accumulation and frost swelling in alpine-cold mountain region. Journal of Engineering Geology, 30(5): 1450−1465. (in Chinese) DOI:  10.13544/j.cnki.jeg.2022-0449.
    Sokolov VN, Razgulina OV, Yurkovets DI, et al. 2007. Quantitative analysis of pore space of moraine clay soils by SEM images. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 1(4): 417−422. DOI:  10.1134/S1027451007040106.
    Wang D, Yang CS, Ma W, et al. 2020. The status and review of frozen fringe in freezing soils. Journal of Glaciology and Geocryology, 42(4): 1195−1201. (in Chinese)
    Wang Q, Wang JP. 2000. A study on fractal of porosity in the soils. Chinese Journal of Geotechnical Engineering, 22(4): 496−498. (In Chinese)
    Wang YK, Liu XL, Zhang XL, et al. 2023. Dynamic response characteristics of moraine-soil slopes under the combined action of earthquakes and cryogenic freezing. Cold Regions Science and Technology, 211: 103854. DOI:  10.1016/j.coldregions.2023.103854.
    Zhang LH, Shi YJ, Yang CS, et al. 2024. Water accumulation unrelated to ice segregation near the freezing front during soil freezing: Implications for frost heave in high-speed railway embankments and ground ice formation. Catena, 243: 108189. DOI:  10.1016/j.catena.2024.108189.
    Zhao W, Wang XJ, Xu ZX, et al. 2021. Experimental study on natural evolution characteristics of coarse-grained soil slope in seasonal frozen soil region. Journal of Engineering Geology, 29(5): 1497−1506. (in Chinese) DOI:  10.13544/j.cnki.jeg.2020-174.
    Zhou GGD, Roque PJC, Xie YX, et al. 2020. Numerical study on the evolution process of a geohazards chain resulting from the Yigong landslide. Landslides, 17(11): 2563−2576. DOI:  10.1007/s10346-020-01448-w.
    Zhou JQ, Zhu WY, Li QL, et al. 2023. Characterization of thermal-hydraulic coupling behavior for moraine soil with ice inclusions in a warming environment. Water Resources Research, 59(12): e2022WR033852. DOI:  10.1029/2022WR033852.
    Zhou Z, Li F, Yang H, et al. 2021. Orthogonal experimental study of soil–rock mixtures under the freeze–thaw cycle environment. International Journal of Pavement Engineering, 22(11): 1376−1388. DOI:  10.1080/10298436.2019.1686634.
  • [1] Xiu-yan Wang, Lin Sun, Shuai-wei Wang, Ming-yu Wang, Jin-qiu Li, Wei-chao Sun, Jing-jing Wang, Xi Zhu, He Di2023:  Development and application of multi-field coupled high-pressure triaxial apparatus for soil, Journal of Groundwater Science and Engineering, 11, 308-316. doi: 10.26599/JGSE.2023.9280025
    [2] Dong Qiu-yao, Xiang Jiao, Song Chao, Wang Pan, Wen Hao-tian, Yan Ming-jiang2022:  Spatial distribution characteristics and main controlling factors of germanium in soil of northern Dabie Mountains, China, Journal of Groundwater Science and Engineering, 10, 381-392. doi: 10.19637/j.cnki.2305-7068.2022.04.006
    [3] Song Chao, Liu Man, Dong Qiu-yao, Zhang Lin, Wang Pan, Chen Hong-yun, Ma Rong2022:  Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition, Journal of Groundwater Science and Engineering, 10, 19-32. doi: 10.19637/j.cnki.2305-7068.2022.01.003
    [4] ZHOU Hao, WU Yong, HUANG Feng, TANG Xue-fang2021:  Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [5] GUO Hao, QIAN Yong, YUAN Guang-xiang, WANG Chun-xiao2020:  Research progress on the soil vapor extraction, Journal of Groundwater Science and Engineering, 8, 57-66. doi: 10.19637/j.cnki.2305-7068.2020.01.006
    [6] Terrazas-Salvatierra Jhim, Munoz-Vásquez Galo, Romero-Jaldin Ana2020:  Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone, Journal of Groundwater Science and Engineering, 8, 223-229. doi: 10.19637/j.cnki.2305-7068.2020.03.003
    [7] LUO Wei-qun, JIANG Zhong-cheng, YANG Qi-yong, LI Yan-qing, LIANG Jian-hong2018:  The features of soil erosion and soil leakage in karst peak-cluster areas of Southwest China, Journal of Groundwater Science and Engineering, 6, 18-30. doi: 10.19637/j.cnki.2305-7068.2018.01.003
    [8] ZHANG Sheng, ZHANG Cui-yun, HE Ze, CHEN Li, YIN Mi-ying, NING Zhuo, SUN Zhen-hua, ZHEN Shi-jun, ZHANG Fa-wang2017:  Application of bioremediation in oil contaminated soil, Journal of Groundwater Science and Engineering, 5, 116-123.
    [9] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan2017:  Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [10] ZHANG Sheng, ZHANG Cui-yun, HE Ze, CHEN Li, ZHANG Fa-wang, YIN Mi-ying, NING Zhuo, SUN Zhen-hua, ZHEN Shi-jun2016:  Application research of enhanced in-situ micro-ecological remediation of petroleum contaminated soil, Journal of Groundwater Science and Engineering, 4, 157-164.
    [11] LI Jie-biao, SU Rui, YANG Jing-zhi, ZHOU Zhi-chao, JI Rui-li, ZHANG Ming, GAO Yu-feng2016:  Distribution characteristics of tritium in the soil in Beishan area of Gansu Province, Journal of Groundwater Science and Engineering, 4, 131-140.
    [12] ZHU Xi, ZHANG Qing-lian, WANG Wan-li, LIU Yan-guang2015:  Study on the influencing factors of rock-soil thermophysical parameters in shallow geothermal energy, Journal of Groundwater Science and Engineering, 3, 256-267.
    [13] CUI Xiang-xiang, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song2015:  Distribution and migration of lead in soil of Xiao River, Shijiazhuang, Hebei Province, Journal of Groundwater Science and Engineering, 3, 98-104.
    [14] XU Guang-ming, QI Jian-feng, BI Pan, BAI Gao-feng2015:  Distribution and evolution features of salinized soil in Hebei Plain, Journal of Groundwater Science and Engineering, 3, 21-29.
    [15] Jian-ye GUI, Chen-ling ZHANG, Yong-tao ZHANG, Li ZHANG2014:  Rapid Determination of Polar Herbicides in Soil Samples Using Accelerated Ultrasonic Extraction (AUE) in Combination with Dispersion and In-situ Derivatization, Journal of Groundwater Science and Engineering, 2, 56-62.
    [16] CHENG Yan-pei, YUE Chen, ZHANG Jian-kang, YI Qing, WEN Xue-ru, LI Yong-chao2014:  Influence of fluctuations of frozen soil in North Asia on groundwater and assessment on resources, Journal of Groundwater Science and Engineering, 2, 71-77.
    [17] LIU Chun-lei, YANG Hui-feng, WANG Gui-ling2014:  Back calculation of soil hydraulic parameters based on HYDRUS-1D, Journal of Groundwater Science and Engineering, 2, 46-53.
    [18] GU Ming-xu, LIU Yu, HAN Chong, SHANG Lin-qun, JIANG Xian-qiao, WANG Lin-ying2014:  Analysis of impact of outfalls on surrounding soil and groundwater environment, Journal of Groundwater Science and Engineering, 2, 54-60.
    [19] Le SONG, Yan-pei CHENG2014:  Optimization Research of Water-Soil Resources in Huanghua, Journal of Groundwater Science and Engineering, 2, 86-94.
    [20] Zhao Wang, Jiansheng Shi, Zhaoji Zhang, Yuhong Fei2013:  Organic Contamination of Soil and Goundwater in the Piedimont Plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 1, 74-81.
  • 加载中
图(14) / 表ll (5)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 录用日期:  2025-10-09
  • 网络出版日期:  2026-01-25
  • 刊出日期:  2026-03-15

目录

    /

    返回文章
    返回