• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 1
Mar.  2021
Turn off MathJax
Article Contents
Li-sha MA, Zhan-tao HAN, Yan-yan WANG. 2021: Dispersion performance of nanoparticles in water. Journal of Groundwater Science and Engineering, 9(1): 37-44. doi: 10.19637/j.cnki.2305-7068.2021.01.004
Citation: Li-sha MA, Zhan-tao HAN, Yan-yan WANG. 2021: Dispersion performance of nanoparticles in water. Journal of Groundwater Science and Engineering, 9(1): 37-44. doi: 10.19637/j.cnki.2305-7068.2021.01.004

Dispersion performance of nanoparticles in water

doi: 10.19637/j.cnki.2305-7068.2021.01.004
More Information
  • Corresponding author: WANG Yan-yan, E-mail: yanyanwang25@126.com
  • Received Date: 2020-06-26
  • Accepted Date: 2020-08-16
  • Publish Date: 2021-03-28
  • Engineering Nanoparticles (ENPs)' superior characteristics of adsorption depends on their dispersion in the medium. In this study, multi-walled carbon nanotubes (nonmetal), iron nanoparticles and silver nanoparticles (metallic simple substance), and Nano-TiO2, Nano-Fe2O3 and Nano-ZnO (metal oxide) were selected and respectively added into pure water and aqueous solution with 1% Sodium dodecyl benzene sulfonate (SDBS) surfactant. The dispersion effects were compared by leaving the solutions standing at room temperature under ultrasound. The results show that the dispersion of iron nanoparticles is the lowestamong the six ENPs, and that of multi-walled carbon nanotubes (MWCTS) is the highest. Adding anionic surfactants (SDBS) can obviously improve the dispersion performance of ENPs. The concentration of solution decreases by only 5% in 10 daysafter adding 1% SDBS for ultrasonic dispersion.
  • 加载中
  • Bystrzejewski M, Huczko A, Lange H, et al. 2010. Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. Journal of Colloid Interface Science, 345(2): 138-142. doi:  10.1016/j.jcis.2010.01.081
    BU Lu-xia, LI Jing-jing, GAO Lin-lin, et al. 2019. Dispersion of multi-walled carbon nanotubes in solution with surfactant SDBS. Plating and Finishing, 7(41): 10-13. (in Chinese)
    GAO Pei-yu, YANG Zhan-xu, LIU Guo-min, et al. 2015. Facile synthesis of MoS2/MWNT anode material for high-performance lith-iumion batteries. Ceramics International: 1921-1925. http://www.sciencedirect.com/science/article/pii/S027288421401517X
    GE Chao-qun, WANG Liu-ying, LIU Gu, et al. 2018. Solution blending preparation and electromagnetic properties of carbon nano-tubes/planar anisotropic carbonyl iron com-posite. Acta Materiae Compositae Sinica, 35(7): 1912-1920. (in Chinese) http://www.researchgate.net/publication/328273457_Solution_blending_preparation_and_electromagnetic_properties_of_carbon_nanotubes_planar_anisotropic_carbonyl_iron_composite
    Ghoreishi SM, Meshkat SS, Dadkhah AA. 2010. IF-WS2 nanoparticles size design and synth-esis via chemical reduction. Materials Re-search Bulletin, 45(4): 584-588. http://www.sciencedirect.com/science/article/pii/S0025540810000267
    GONG Xiao-yi, LIU Jun, Suresh Baskaran, et al. 2016. Surfactant-assisted processing of Carbon nanotube/polymer composites. Che-mistry of Materials, 12(4): 1049-1052. (in Chinese) doi:  10.1021/cm9906396
    HAN Jing-quan, WANG Si-wei, YUE Yi-ying, et al. 2018. Preparation and characterization of cellulose nanocrystal-carbon nanotube/polyvinyl alcohol composite conductive membranes with oriented fibers by electros-pinning. Acta Materiae Compositae Sinica, 35(9): 2351-2361. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-FUHE201809006.htm
    HU Xin-hua, ZI Jian. 2002. Reconstruction of phonon dispersion in Si nanocrystals. Journal of Physics: Condensed Matter, 14(41): 671-672. doi:  10.1088/0953-8984/14/41/101
    LI Yue-fang. 2019. Research advances in dis-persion techniques and application of metal oxide nanoparticles for epoxy modifica-tions. Thermosetting Resin, 5(9): 67-70. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-RGXS201505027.htm
    LIU Jing-fu, CHEN Hai-hong, XIA Zhen-bin, et al. 2010. Advance on the nano-particles, dispersion mechanism, methods and app-lication. Synthetic Materials Aging and Application, 2 (39): 36-40. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HOCE201002010.htm
    MAO Da-heng, LIU Yang, SHI Chen. 2013. Dispersion stability and mechanism of nano-WS2 particulates in base lubrication oil after high power ultrasound ball milling surface modification treatment. Materials for Mechanical Engineering, 37(7): 53-57. (in Chinese)
    MAO Sheng-chun, NIU Jian-hua, XU You-long, et al. 2009. Optical limiting properties of MWNTs suspension in different pH values conditions. Materials Review, 10 (23): 20-22. (in Chinese)
    MO Jian-qiang, MO Guo-qiang. 2015. Current status and trend of precipitated silica in silicone sealant. Guangzhou Chemical Industry, 12(43): 41-42. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZHA201512019.htm
    Mohannad JK, Daniel S. 2017. Polymer-stabilized multi-walled carbon nanotube dispersions in high-salinity brines. Energy Fuels, 31: 5024-5030. doi:  10.1021/acs.energyfuels.7b00522
    QIAO Yin-po, YIN Jian-bo, ZHAO Xiao-peng. 2007. Oleophilicity and the strong electro rheological effect of surface-modified titanium oxide nano-particles. Smart Mater Struct, 16: 332-339. doi:  10.1088/0964-1726/16/2/011
    SHANG Hong-zhou, HE Jun-nan, ZHAO Jing-dong, et al. 2017. The latest progress in the carbon nanotube composite materials. App-lied Chemical Industry, 46(3): 569-572. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXHG201703040.htm
    SUN Jing, GAO Lian, GUO Jing-Kun. 1999. Effect of dispersant on the measurement of particle size distribution of nano size Y-TZP. Journal of Inorganic Materials, 14(3): 465-469. (in Chinese) http://www.researchgate.net/publication/297500566_Effect_of_dispersant_on_the_measurement_of_particle_size_distribution_of_nano_size_Y-TZP
    WANG Bu-xuan, SHENG Wen-yan. 2007. Macro cluster analysis model for thermal conductivity of nanofluids. Progress in Na-tural Science, 17(3): 984-988. (in Chinese)
    WANG Jing-wen, ZHANG Jing-jing, FAN Tong-xiang. 2018. Process in surface treatment of carbon nanotubes and its applications to copper matrix composites. Materials Review, 9(32): 2932-2939. http://en.cnki.com.cn/Article_en/CJFDTotal-CLDB201817006.htm
    WU Bo, SHAO Fa-ning, HE Wen, et al. 2019. Dispersion effect of TEMPO oxidized cellulose nanofibrils on multi-walled carbon nanotubes. Acta Materiae CompositaeSinica, 9(36): 2212-2219. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-FUHE201909026.htm
    XIA He-sheng, WANG Qi, QIU Gui-hua. 2003. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chemistry of Materials, 15(20): 3879-3886. doi:  10.1021/cm0341890
    XU Peng. 2018. Study on surface treatment and dispersion of carbon nanotubes. Shenzhen: South China University of Technology. (in Chinese)
    YAN Xiao-san, QIAN Jia-zhong, MA Lei. 2019. Experimental study on the velocity-dependent dispersion of the solute transport in different porous media. Journal of Groundwater Science and Engineering, 7(2): 106-114. http://gwse.iheg.org.cn/en/article/id/366
    YANG Chun-xia, ZHAO Wen-bin. 2018. Surface modification and dispersion of multi-walled carbon nanotubes. Journal of Heilongjiang University of Science & Technology, 5(3): 286-291. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-COSE2007S3025.htm
    YANG Heng, LIU Xiao-yan, ZHANG Yu-mei, et al. 2017. Review on the dispersion of carbon nanotubes via the surfactants. Application for Stabilization, 4: 59-63. (in Chinese)
    YANG Shi-zhao, HU Jian-qiang, JI Feng, et al. 2020. Influence on dispersion and friction properties of IF-WS2 nanoparticles by two dispersants. Lubrication Engineering, 2(45): 61-67. (in Chinese)
    YUAN Ming, WU Wen-yan, ZHANG Jing, et al. 2018. Research progress on surface func-tional modification of carbon nanotubes. Guangzhou Chemical Industry, 6(12): 37-39. (in Chinese)
    ZHANG Li-de. 2001. Nanomaterials and nano-structures. Beijing: Science and Technology Press, 25: 62-99. (in Chinese)
    ZHANG Ying, HOU Wen-sheng, WEI Li-qiao, et al. 2006. Nano-SiO2 coated and modified by Al(OH)3/Neopelex. Materials Review, 200: 175-177. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CLDB2006S1056.htm
    ZHENG Guo-dong, ZHANG Qing-jie, DENG Huo-ying, et al. 2015. Effect of different func-tionalized carbon nanotubes on mechanical properties of MWCNTs-carbon fiber/epoxy composites. Acta Materiae Compositae Sinica, 32(3): 640-648. (in Chinese) http://www.researchgate.net/publication/282375530_Effect_of_different_functionalized_carbon_nanotubes_on_mechanical_properties_of_MWCNTs-carbon_fiberepoxy_composites
  • Relative Articles

    [1] Wen Liang, Nian-qing Zhou, Chao-meng Dai, Yan-ping Duan, Lang Zhou, Yao-jen Tu, 2021: Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater, Journal of Groundwater Science and Engineering, 9, 171-180.  doi: 10.19637/j.cnki.2305-7068.2021.03.001
    [2] YAN Xiao-san, QIAN Jia-zhong, MA Lei, 2019: Experimental study on the velocity-dependent dispersion of the solute transport in different porous media, Journal of Groundwater Science and Engineering, 7, 106-114.  doi: 10.19637/j.cnki.2305-7068.2019.02.002
    [3] LI Hui, HAN Zhan-tao, MA Chun-xiao, GUI Jian-ye, 2015: Comparison of 1,2,3-Trichloropropane reduction and oxidation by nanoscale zero-valent iron, zinc and activated persulfate, Journal of Groundwater Science and Engineering, 3, 156-163.
    [4] Jian-ye GUI, Chen-ling ZHANG, Yong-tao ZHANG, Li ZHANG, 2014: Rapid Determination of Polar Herbicides in Soil Samples Using Accelerated Ultrasonic Extraction (AUE) in Combination with Dispersion and In-situ Derivatization, Journal of Groundwater Science and Engineering, 2, 56-62.
  • 加载中


    Figures(4)  / Tables(1)

    Article Metrics

    Article views (606) PDF downloads(43) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint