• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 1
Mar.  2021
Turn off MathJax
Article Contents
Hong-bo HAO, Jie LV, Yan-mei CHEN, et al. 2021: Research advances in non-Darcy flow in low permeability media. Journal of Groundwater Science and Engineering, 9(1): 83-92. doi: 10.19637/j.cnki.2305-7068.2021.01.008
Citation: Hong-bo HAO, Jie LV, Yan-mei CHEN, et al. 2021: Research advances in non-Darcy flow in low permeability media. Journal of Groundwater Science and Engineering, 9(1): 83-92. doi: 10.19637/j.cnki.2305-7068.2021.01.008

Research advances in non-Darcy flow in low permeability media

doi: 10.19637/j.cnki.2305-7068.2021.01.008
More Information
  • Corresponding author: CHEN Yan-mei, E-mail: ymchen831219@yangtze.edu.cn
  • Received Date: 2020-10-22
  • Accepted Date: 2020-12-18
  • Publish Date: 2021-03-28
  • More and more experimental results show that Darcy's law is not fully applicable in low permeability media, and non-Darcy flow has been identified. In this paper we reviewed the research of non-Darcy flow experiments in low-permeability media in recent decades, discuss the existence of non-Darcy flow, and summarize its constitutive equations. The reasons for the threshold gradient were also discussed and summarized for the criterion of the critical point of non-Darcy flow. On this basis, the future development of non-Darcy flow experiments in the rock and clay media were discussed, in order to provide a certain reference for subsequent research on seepage laws in low permeability media.
  • 加载中
  • Akoanung, Ayaba, Abendong, et al. 2019. A trigger-tube tracer dilution technique for determining Darcy and apparent velocities of groundwater in dug wells: A case study on phreatic aquiferous formation in Bamenda-Cameroon. Journal of Groundwater Science and Engineering, 7(02): 182-194. http://gwse.iheg.org.cn/en/article/id/373
    Bear J. 1983. Dynamics of fluids in porous media. Translated by LI Jing-sheng and CHEN Chong-xi. Beijing: China Architecture Publishing & Media Co., Ltd: 97-142.
    Chilton TH, Colburn AP. 2002. Ⅱ-pressure drop in packed tubes1. Industrial and Engineering Chemistry, 23(8): 913-919.
    CHEN Jian, FANG Ying-guang, GU Ren-guo, et al. 2019. Study on pore size effect of low permeability clay seepage. Arabian Journal of Geosciences, 12: 238. https://doi.org/10.1007/s12517-019-4375-3 doi:  10.1007/s12517-019-4375-3
    DENG Ying-er, LIU Ci-qun. 2001. Mathematical model of nonliner flow law in low-per-meability porous media and its application. Acta petrolei sinica, (04): 72-77. (in Chinese) http://www.researchgate.net/publication/283522953_Mathematical_model_of_nonlinear_flow_law_in_low_permeability_porous_media_and_its_application
    DENG Ying-er, HUANG Rui-qiu, LIU Ci-qun. 2009. Nonlinear flow law and consolidation in unsaturated low-permeability clays. Journal of Hydrodinamics, 01: 100-105. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDLJ200901019.htm
    Engelhardt WV, Tunn WLM. 1955. The flow of fluids through sandstones. Circular-Illinois State Geological Survey, 194: 1-17. http://www.ideals.illinois.edu/handle/2142/45183
    FENG Xiao-la. 1988. Permeability research of saturated cohesive soil and its future develo-pment. Geological Science and Technology Information, (03): 55-60. (in Chinese) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ198803012.htm
    Green LJDP. 1951. Fluid flow through porous metals. Journal of Applied Mechanics, 18: 39-45.
    GUO Shang-ping, ZHANG Sheng-zong. 1996. Advances in seepage research and applica-tion. National Symposium on Seepage Mech-anics: 1-12. (in Chinese)
    Hansbo S. 1960. Consolidation of clay, with special reference to influence of vertical sand drains. Swedish Geotechnical Institute, 18: 45-50. http://www.researchgate.net/publication/288808172_Consolidation_of_clay_with_special_reference_to_influence_of_vertical_sand_drains
    HUANG Yan-zhang. 1997. Non-linear flow chara-cteristics of low permeability reservoirs. Special Oil & Gas Reservoirs, 004(1): 9-14. (in Chinese)
    HUANG Yan-zhang. 1998. Low-permeability oil layer seepage mechanism. Beijing: Petroleum Industry Press: 80-86. (in Chinese)
    JIA Zhen-qi, ZHANG Lian-zhong. 2001. Characteristics of non-Darcy percolation and influencing factors under the condition of low permeability and low velocity. Journal of Northeast Petroleum University, (3): 73-76. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSY200103017.htm
    Klípa V, Zumr D, Snehota M, et al. 2014. Seasonal variability of near-saturated hydraulic con-ductivity on cultivated soil. EGU General Assembly Conference Abstracts.
    LI Zhong-feng, HE Shun-li, MEN Cheng-quan. 2005. Study on the non-Darcy percolation rules in the low permeable oilfield. Well Testing, 14(3): 14-17. (in Chinese) http://www.researchgate.net/publication/294223608_Study_on_the_non-Darcy_percolation_rules_in_the_low_permeable_oilfield
    LIU Jian-jun, LIU Xian-gui, HU Ya-ren. 2003. Study on nonlinear seepage of rock of low- permeability. Chinese Journal of Rock Mech-anics and Engineering, 22(4): 556-561. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200304011.htm
    LIU Kai, WEN Zhang, LIANG Xin, et al. 2013. One-dimensional column test for non-Darcy flow in low permeability media. Chinese Journal of Hydrodynamics, 01: 91-97. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDLJ201301014.htm
    LIU Wei-zong, WANG Wen-hai, LI Jun-qi, et al. 2020. Study on infiltration characteristics of soil under natural drying process conditions. Environmental Engineering, 38(04): 72-76. (in Chinese)
    LIU Xiao-xu, HU Yong, ZHU Bin, et al. 2006. Study on low-velocity non-Darcy gas per-colation mechanism and characteristics. Special and Gas Reservoirs, 13(006): 43-46. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ200606012.htm
    Miller RJ, Low PF. 1963. Threshold gradient for water flow in clay systems. Soil Science Society of America Journal, 27(6): 605-609. doi:  10.2136/sssaj1963.03615995002700060013x
    Mitchell J, Younger J. 1967. Abnormalities in hydraulic flow through fine grained soils. Soil Science Society of America Journal: 605-612. http://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP47262S.htm
    Neuman, Shlomo P. 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research, 8(4): 1031-1045. doi:  10.1029/WR008i004p01031
    Neuzil CE. 1986. Groundwater flow in low-per-meability environments. Water Resources Research, 22(8): 1163-1195. doi:  10.1029/WR022i008p01163
    Olsen HW. 1965. Deviations from Darcy's Law in saturated clays. Soil Science Society of America Journal, 29(2): 135. doi:  10.2136/sssaj1965.03615995002900020009x
    Olsen HW. 1966. Darcy's law in saturated kaolinite. Water Resources Research, 2(2): 287-295. doi:  10.1029/WR002i002p00287
    Prada A, Civan F. 1999. Modification of Darcy's law for the threshold pressure gradient. Journal of Petroleum Science and Engineering, 22(4): 237-240. doi:  10.1016/S0920-4105(98)00083-7
    QI Tian, XIE Kang-he, HU An-feng, et al. 2007. Laboratorial study on non-Darcy seepage in Xiaoshan clay. Journal of Zhejiang University (Engineering Science), (06): 149-154. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZDZC200706029.htm
    QIN Feng, WANG Yuan. 2009. Research advance of non-Darcy flow. Journal of China Three Gorges University (Natural Science), (03): 25-29. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHYC200903006.htm
    RUAN Min, LI Xiang-fang, FENG Yu. 2009. A new method for distinguishing non-Darcy flow in low-permeability oil reservoirs. Journal of Xi'an Shiyou University (Natural Science Edition), 24(04): 39-41. (in Chinese) http://www.researchgate.net/publication/291677529_A_new_method_for_distinguishing_non-Darcy_flow_in_low-permeability_oil_reservoirs
    SU Qing-shan, DUAN Shu-juan. 1994. New understanding and application of saturated clay soil permeability. Journal of Changchun University of Earth Science, 24(1): 50-56. (in Chinese)
    SUN Li-yun, YUE Jin-chao, ZHANG Jie. 2010. Experimental study on non-Darcy permeability characteristics of saturated clays. Journal of Zhengzhou University (Engineering Science), (06): 31-34. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZZGY201006009.htm
    ŠVEC VHJ. 1979. Groundwater hydraulics. Elsevier Science: 60-61.
    WANG Dao-cheng, LI Min, CHENG Hao, et al. 2006. The experimental study of critical reynolds number on low velocity non-Darcy flow. XinJiang Petroleum Geology, 27(3): 332-334. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200603020.htm
    WANG Hai-ke, QIAN Hui, GAO Yan-yan. 2020. Non-Darcy flow in loess at low hydraulic gradient. Engineering Geology, 267: 105483. doi:  10.1016/j.enggeo.2020.105483
    WANG Hui-ming, WANG En-zhi, HAN Xiao-mei, et al. 2003. Advances in the research on saturated seepage flow in low-permeability rock masses. Advances in Water Science, 014(2): 242-248. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200302023.htm
    WANG Sheng-wei, ZHU Wei, FEI Kang, et al. 2018. Study on non-darcian flow sand-clay mixtures. Applied Clay Science, 151: 102-108. doi:  10.1016/j.clay.2017.10.028
    WANG Xiu-yan, LIU Chang-li. 2003. New under-standing of the regularity of water seepage in cohesive soil. Acta Geoscientia Sinica, 01: 91-95. (in Chinese) http://www.oalib.com/paper/1559080
    WU Jing-chun, YUAN Man, ZHANG Ji-cheng, et al. 1999. Characteristics of single-phase low-velocity of non-Darcy flow in a low-permeability reservoir in eastern Daqing. Journal of Daqing Petroleum Intitute, 23(2): 82-84. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSY902.025.htm
    XIAO Jin-yang. 2019. Nonlinear large strain consolidation analysis of nature structured soft clay subgrade. Jiangsu University. (in Chinese)
    XU Chuan-fu. 2008. Studying the permeable regularities of water in less permeable and saturated Clay. Jilin Geology, 27(001): 36-38. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JLDZ200801009.htm
    XU Jie, LUO Yu-lin, ZHANG Jin-zhi, et al. 2011. Low-permeability reservoir seepage law and exploitation research status. Petrochemical Industry Application, 07: 7-10. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-NXSH201107007.htm
    YAN Qing-lai, HE Qiu-xuan, WEI Li-gang. 1990. A laboratory study on percolation characteristics of single-phase flow in low-permeability reservoirs. Journal of Xi'an Petroleum Institute, (2): 1-6. (in Chinese) http://www.researchgate.net/publication/283921425_A_laboratory_study_on_percolation_characteristics_of_single_phase_flow_in_low-permeability_reservoirs
    YAO Yue-dong, GE Jia-li. 2000. Study on non-Darcy flow pattern in low-permeability oil reservoir. XinJiang Petroleum Geology, 03: 213-215. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200003009.htm
    Youn Sim, Constantinos V, Chrysikopoulos. 1999. Analytical solutions for solute transport in saturated porous media with semi-infinite or finite thickness. Advances in Water Resources, 22(5): 507-519. doi:  10.1016/S0309-1708(98)00027-X
    ZHANG Ying-ling, ZHU Jing-yi. 1991. A preliminary study in indoor test of permeability coefficient of cohesive soil. Bulletin of Geological Science and Technology, (1): 74-78. (in Chinese) http://search.cnki.net/down/default.aspx?filename=DZKQ199101016&dbcode=CJFD&year=1991&dflag=pdfdown
    ZHOU Zhi-fang, ZHU Hong-gao, CHEN Jing, et al. 2004. Nonlinear coupling calculation between dewatering and settlement of deep foundation pits. Rock and Soil Mechanics, (12): 132-136. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX20041200Q.htm
    Zimmerman RW. 2000. Coupling in poroelasticity and thermoelasticity. International Journal of Rock Mechanics and Mining Sciences, 37(1-2): 79-87. doi:  10.1016/S1365-1609(99)00094-5
    Φ. А. Τребин, 1965. нефтепрость Полпекторов. Гостолтехиздат. (in Russian)
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office.

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

  • Relative Articles

    [1] Shuai-chao Wei, Feng Liu, Wei Zhang, Gui-ling Wang, Ruo-xi Yuan, Yu-zhong Liao, Xiao-xue Yan, 2022: Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province, Journal of Groundwater Science and Engineering, 10, 166-183.  doi: 10.19637/j.cnki.2305-7068.2022.02.006
    [2] Yi-jie Zong, Li-hua Chen, Jian-jun Liu, Yue-hui Liu, Yong-xin Xu, Fu-wan Gan, Liang Xiao, 2022: Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect, Journal of Groundwater Science and Engineering, 10, 311-321.  doi: 10.19637/j.cnki.2305-7068.2022.04.001
    [3] Feng Ma, Gui-ling Wang, Hong-li Sun, Zhan-xue Sun, 2022: Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 10, 70-86.  doi: 10.19637/j.cnki.2305-7068.2022.01.007
    [4] Yan-hao Wu, Nian-qing Zhou, Zi-jun Wu, Shuai-shuai Lu, Yi Cai, 2022: Carbon, nitrogen and phosphorus coupling relationships and their influencing factors in the critical zone of Dongting Lake wetlands, China, Journal of Groundwater Science and Engineering, 10, 250-266.  doi: 10.19637/j.cnki.2305-7068.2022.03.004
    [5] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [6] Zhao-xian Zheng, Ling-xia Liu, Xiao-shun Cui, 2021: Source identification of methane in groundwater in shale gas development areas: A critical review of the state of the art, prospects, and future challenges, Journal of Groundwater Science and Engineering, 9, 245-255.  doi: 10.19637/j.cnki.2305-7068.2021.03.007
    [7] Daneshfaraz Rasoul, Aminvash Ehsan, Esmaeli Reza, Sadeghfam Sina, Abraham John, 2020: Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions, Journal of Groundwater Science and Engineering, 8, 396-406.  doi: 10.19637/j.cnki.2305-7068.2020.04.009
    [8] Yan WANG, Yan-guang LIU, Kai BIAN, Hong-liang ZHANG, Shen-jun QIN, Xiao-jun WANG, 2020: Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China, Journal of Groundwater Science and Engineering, 8, 305-314.  doi: 10.19637/j.cnki.2305-7068.2020.04.001
    [9] Akoanung Ayaba ABENDONG, ENDENE Emmanuel, Enoh Jeanot FONGOH, AKOACHERE Richard Ayuk II, NJENG Napoleon Ngenge, 2019: A trigger-tube tracer dilution technique for determining Darcy and apparent velocities of groundwater in dug wells: A case study on phreatic aquiferous formation in Bamenda -Cameroon, Journal of Groundwater Science and Engineering, 7, 182-194.
    [10] YAN Xiao-san, QIAN Jia-zhong, MA Lei, 2019: Experimental study on the velocity-dependent dispersion of the solute transport in different porous media, Journal of Groundwater Science and Engineering, 7, 106-114.
    [11] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [12] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan, 2017: Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [13] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li, 2016: Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [14] ZHOU Xun, WANG Xiao-cui, CAO Qin, LONG Mi, ZHENG Yu-hui, GUO Juan, SHEN Xiao-wei, ZHANG Yu-qi, TA Ming-ming, CUI Xiang-fei, 2016: A discussion of up-flow springs, Journal of Groundwater Science and Engineering, 4, 279-283.
    [15] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [16] , 2014: The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [17] BAI Xi-qing, LIU Yan, 2014: Feasibility Analysis on Resuming Flow of Large Karst Spring in Heilongdong, Journal of Groundwater Science and Engineering, 2, 80-87.
    [18] LU Chuan, LI Long, LIU Yan-guang, WANG Gui-ling, 2014: Capillary Pressure and Relative Permeability Model Uncertainties in Simulations of Geological CO2 Sequestration, Journal of Groundwater Science and Engineering, 2, 1-17.
    [19] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
    [20] , 2013: The Study of Statistical Damage Constitutive Models of Rock and Its Parameters Based on Lade-Duncan Criterion, Journal of Groundwater Science and Engineering, 1, 74-79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (459) PDF downloads(40) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return