• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Ma X, Wen DG, Yang GD, et al. 2021. Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin. Journal of Groundwater Science and Engineering, 9(4): 279-291 doi:  10.19637/j.cnki.2305-7068.2021.04.002
Citation: Ma X, Wen DG, Yang GD, et al. 2021. Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin. Journal of Groundwater Science and Engineering, 9(4): 279-291 doi:  10.19637/j.cnki.2305-7068.2021.04.002

Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin

doi: 10.19637/j.cnki.2305-7068.2021.04.002
More Information
  • Corresponding author: lixufeng@mail.cgs.gov.cn
  • Note: ① The effective storage coefficient of CO2 in deep saline aquifers calculated based on the Monte Carlo model is defined as P10 when the confidence level is 90%, the effective storage coefficient of CO2 is defined as P50 when the confidence level is 50%, and the effective storage coefficient of CO2 is defined as P90 when the confidence level is 10%.
  • Received Date: 2021-05-31
  • Accepted Date: 2021-10-09
  • Available Online: 2021-12-20
  • Publish Date: 2021-12-15
  • Carbon Capture and Storage (CCS) is one of the effective means to deal with global warming, and saline aquifer storage is considered to be the most promising storage method. Junggar Basin, located in the northern part of Xinjiang and with a large distribution area of saline aquifer, is an effective carbon storage site. Based on well logging data and 2D seismic data, a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed, and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study. The results show that within 100 km2 of the saline aquifer of Donggou Formation in the vicinity of D7 well, the theoretical static CO2 storage is 71.967 × 106 tons (P50), and the maximum dynamic CO2 storage is 145.295 × 106 tons (Case2). The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO2 in the reservoir. The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage. Based on the results from theoretical static calculation and the dynamic simulation, the effective coefficient of CO2 storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%. This study can be applied to the engineering practice of CO2 sequestration in the deep saline aquifer in Xinjiang.
  • Note: ① The effective storage coefficient of CO2 in deep saline aquifers calculated based on the Monte Carlo model is defined as P10 when the confidence level is 90%, the effective storage coefficient of CO2 is defined as P50 when the confidence level is 50%, and the effective storage coefficient of CO2 is defined as P90 when the confidence level is 10%.
  • 加载中
  • Bachu S. 2015. Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 40: 188-202. doi:  10.1016/j.ijggc.2015.01.007
    Bachu S, Adams JJ. 2003. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 44(20): 3151-3175. doi:  10.1016/S0196-8904(03)00101-8
    Bachu S, Bonijoly D, Bradshaw J, et al. 2007. CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1(4): 430-443. doi:  10.1016/S1750-5836(07)00086-2
    CSLF(Carbon Sequestration Leadership Forum). 2005. “Phase I Final report from the task force for review and identification of standards for CO2 storage capacity measurement, prepared by the task force on CO2 storage capacity estimation for the technical group of the Carbon Sequestration Leadership Form August”. Technology Report: edition 22.
    CSLF(Carbon Sequestration Leadership Forum), 2007. “Estimation of CO2 storage capacity in geological media (Phase), Prepared by the task force on CO2 storage capacity estimation for the technical group of the Carbon Sequestration Leadership Form 15 June ”. Technology Report: edition 24.
    CSLF (Carbon Sequestration Leadership Forum), 2010. Task Force for Review and Identification of Standards for CO2 Storage Capacity Estimation.
    De Silva PNK, Ranjith PG. 2012. A study of methodologies for CO2 storage capacity estimation of saline aquifers. Fuel, 93: 13-27. doi:  10.1016/j.fuel.2011.07.004
    Diao YJ, Zhu GW, Cao H, et al. 2017. Mesoscale assessment of CO2 storage potential and geological suitability for target area selection in the Sichuan Basin. Geofluids, 2017(1): 1-17. doi:  10.1155/2017/9587872
    DOE-NETL. 2006. Carbon Sequestration Atlas of the United States and Canada.
    DOE-NETL. 2008. Carbon Sequestration Atlas of the United States and Canada, 2nd edition.
    DOE-NETL. 2010. Carbon Sequestration Atlas of the United State and Canada, 3rd edition.
    Flett M, Gurton R, Weir G. 2007. Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping. Journal of Petroleum Science and Engineering, 57(1-2): 106-118. doi:  10.1016/j.petrol.2006.08.016
    Goodman A, Hakala A, Bromhal G, et al. 2011. US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. International Journal of Greenhouse Gas Control, 5(4): 952-965. doi:  10.1016/j.ijggc.2011.03.010
    Guo JQ, Wen DG, Zhang SQ, et al. 2015. Potential and suitability evaluation of CO2 geological storage in major sedimentary basins of China. Acta Geological Sinica (English Edition), 89(4): 1319-1332. doi:  10.1111/1755-6724.12531
    He K, Zhu YS, Wang Z, et al. 2002. The Reservoir -Forming Conditions and Analyses of CretaceousExploration Prospect in the East of Junggar Basin. Journal of Xinjiang Petroleum Institute, 14(2): 6-9, 80. (in Chinese) doi:  10.3969/j.issn.1673-2677.2002.02.002
    IPCC. 2005. Special Report on Carbon Dioxide Capture and Storage.
    Jin C, Liu LT, Li YM, et al. Capacity assessment of CO2 storage in deep saline aquifers by mineral trapping and the implications for Songliao Basin, Northeast China. Energy Science & Engineering, 2017, 5(2): 81-89.
    Lee H, Seo J, Lee Y, et al. 2016. Regional CO2 solubility trapping potential of a deep saline aquifer in Pohang basin, Korea. Geosciences Journal, 20(4): 561-568. doi:  10.1007/s12303-015-0068-4
    Li PC, Zhou D, Zhang CM, et al. 2015. Assessment of the effective CO2, storage capacity in the Beibuwan Basin, offshore of southwestern PR China. International Journal of Greenhouse Gas Control, 37: 325-339. doi:  10.1016/j.ijggc.2015.03.033
    Li Q, Chen ZA, Zhang JT, et al. 2016. Positioning and revision of CCUS technology development in China. International Journal of Greenhouse Gas Control, 46: 282-293. doi:  10.1016/j.ijggc.2015.02.024
    Li Q, Wei YN, Liu G, et al. 2015. CO2-EWR: A cleaner solution for coal chemical industry in China. Journal of Cleaner Production, 103: 330-337. doi:  10.1016/j.jclepro.2014.09.073
    Li Q, Wei YN, Liu GZ, et al. 2014. Combination of CO2 geological storage with deep saline water recovery in western China: Insights from numerical analyses. Applied Energy, 116: 101-110. doi:  10.1016/j.apenergy.2013.11.050
    Li XC, Liu YF, Bai BF, et al. 2006. Ranking and screening of CO2 saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 25(5): 963-968. (in Chinese) doi:  10.3321/j.issn:1000-6915.2006.05.015
    Liu DQ, Li YL, Song SY, et al. 2016. Simulation and analysis of lithology heterogeneity on CO2 geological sequestration in deep saline aquifer: A case study of the Ordos Basin. Environmental Earth Sciences, 75(11): 1-13. doi:  10.1007/s12665-016-5754-7
    Ma X, Li XF, Yang GD, et al. 2018. Study on Field-scale of CO2 Geological Storage Combined with Saline Water Recovery: A Case Study of East Junggar Basin of Xinjiang. Energy Procedia, 154: 36-41. doi:  10.1016/j.egypro.2018.11.007
    Mi ZX, Wang FG, Yang YZ, et al. 2018. Evaluation of the potentiality and suitability for CO2 geological storage in the Junggar Basin, northwestern China. International Journal of Greenhouse Gas Control. 78: 62-72.
    Oh J, Kim K Y, Han WS, et al. 2013. Experimental and numerical study on supercritical CO2/brine transport in a fractured rock: Implications of mass transfer, capillary pressure and storage capacity. Advances in Water Resources, 62(12): 442-453. doi:  10.1016/j.advwatres.2013.03.007
    Thomas MW, Stewart M, Trotz M, et al. 2012. Geochemical modeling of CO2, sequestration in deep, saline, dolomitic-limestone aquifers: Critical evaluation of thermodynamic sub-models. Chemical Geology, 306-307: 29-39. doi:  10.1016/j.chemgeo.2012.02.019
    Wang Y, Guo CH, Zhuang SR , et al. 2021. Major contribution to carbon neutrality by China’s geosciences and geological technologies. China Geology, 4: 329-352. doi:  10.31035/cg2021037
    Wen DG, Ma X, Wang LQ, et al. 2019. Combined study of static and dynamic reservoir modelling for the CO2 storage project in deep saline aquifer in Zhundong, Xinjiang, China. In 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14). Melbourne. Social Science Electronic Publishing.
    Wen DG, Guo JQ, Jia XF, et al. 2013. The progress of carbon dioxide geological storage research and pilot project in China. Acta Geologica Sinica, 87: 971. (in Chinese)
    Xu TF, Kharaka YK, Doughty C, et al. 2010. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot. Chemical Geology, 271: 153-164. doi:  10.1016/j.chemgeo.2010.01.006
    Yang ZJ, Xu TF, Wang FG, et al. 2019. A study on the CO2-Enhanced water recovery efficiency and reservoir pressure control strategies. Geofluids: 1-17. doi:  10.1155/2019/6053756
  • Relative Articles

    [1] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118.  doi: 10.26599/JGSE.2024.9280009
    [2] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad, 2023: Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277.  doi: 10.26599/JGSE.2023.9280022
    [3] Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208.  doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [4] Chun-chao ZHANG, Xin-wei HOU, Xiang-quan LI, Zhen-xing WANG, Chun-lei GUI, Xue-feng ZUO, Jian-fei MA, Ming GAO, 2020: Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222.  doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [5] Feng LIU, Gui-ling WANG, Wei ZHANG, Chen YUE, Li-bo TAO, 2020: Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337.  doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [6] LI Wen-yon, FU Li, ZHU Zheng-feng, 2019: Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18, Journal of Groundwater Science and Engineering, 7, 133-144.  doi: 10.19637/j.cnki.2305-7068.2019.02.004
    [7] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine, 2019: Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [8] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [9] WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui, 2018: Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186.  doi: 10.19637/j.cnki.2305-7068.2018.03.003
    [10] ZHAN Jiang, LI Wu-jin, LI Zhi-ping, ZHAO Gui-zhang, 2018: Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column, Journal of Groundwater Science and Engineering, 6, 205-219.  doi: 10.19637/j.cnki.2305-7068.2018.03.006
    [11] ZHANG Chun-chao, LI Xiang-quan, GAO Ming, HOU Xin-wei, LIU Ling-xia, WANG Zhen-xing, MA Jian-fei, 2017: Exploitation of groundwater resources and protection of wetland in the Yuqia Basin, Journal of Groundwater Science and Engineering, 5, 222-234.
    [12] YUE Gao-fan, LV Wen-bin, ZHANG Wei, SU Ran, LIN Wen-jing, 2016: Optimization of geothermal water exploitation in Xinji, Hebei Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 197-203.
    [13] QI Jian-feng, TIAN Meng-ke, CHI Xiu-cheng, WANG Cheng-zhen, 2016: Research on ground fissure origins and mechanisms in Hebei Plain, P. R. China, Journal of Groundwater Science and Engineering, 4, 188-196.
    [14] WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [15] YANG Yun, WU Jian-feng, LIU De-peng, 2015: Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China, Journal of Groundwater Science and Engineering, 3, 352-362.
    [16] WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li, 2015: Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong, Journal of Groundwater Science and Engineering, 3, 342-350.
    [17] WEI Jia-hua, CHU Hai-bo, WANG Rong, JIANG Yuan, 2015: Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing, Journal of Groundwater Science and Engineering, 3, 316-330.
    [18] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [19] LU Chuan, LI Long, LIU Yan-guang, WANG Gui-ling, 2014: Capillary Pressure and Relative Permeability Model Uncertainties in Simulations of Geological CO2 Sequestration, Journal of Groundwater Science and Engineering, 2, 1-17.
    [20] ZHANG Wei, 2014: Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25.
  • 加载中

Catalog

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (1044) PDF downloads(68) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return