• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Liu YC, Zhang ZJ, Zhao XY, et al. 2021. Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment. Journal of Groundwater Science and Engineering, 9(4): 304-316 doi:  10.19637/j.cnki.2305-7068.2021.04.004
Citation: Liu YC, Zhang ZJ, Zhao XY, et al. 2021. Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment. Journal of Groundwater Science and Engineering, 9(4): 304-316 doi:  10.19637/j.cnki.2305-7068.2021.04.004

Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment

doi: 10.19637/j.cnki.2305-7068.2021.04.004
More Information
  • Corresponding author: liyasong712@126.com
  • Received Date: 2021-07-09
  • Accepted Date: 2021-10-21
  • Available Online: 2021-10-29
  • Publish Date: 2021-12-15
  • Arsenic contamination from roxarsone in livestock manure is common, and livestock manure continuously accumulates in the open environment. Evaluations of the environmental processes of As mobilization and transformation are critical for predicting the fate of As compounds after roxarsone degradation. In this study, spatiotemporal variations in As species and microbial community structure were characterized using laboratory column experiments with background soil collected from Yanggu County (northern Shandong Plain, China), a region of intense poultry production. Organic and inorganic arsenic were detected by high-performance liquid chromatography (HPLC) and HPLC with hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS), respectively. High-throughput sequencing technology was used to describe microbial diversity. Results showed that roxarsone was transformed completely within 7 days, and As(Ⅲ) and As(Ⅴ) were the major degradation products. The concentration of As(Ⅲ) was much lower than that of As(Ⅴ). The As(Ⅲ) concentration increased significantly after Day 14, whereas the As(Ⅴ) concentration increased significantly after Day 84, indicating that As(Ⅲ) was initially produced. The microbial community structure changed significantly as roxarsone transformed into various As compounds. A critical and dominant bacterial strain, norank_f__Family_XVⅢ, was found to be related to the degradation of roxarsone into As(Ⅲ). This study improves our understanding of the fate of As species released from poultry litter to soil and groundwater, which is a threat to human health and environment.
  • 加载中
  • Abedin MJ, Cresser MS, Meharg AA, et al. 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L). Environmental Science & Technology, 36(5): 962-968. doi:  10.1021/es0101678
    Arcega-Cabrera F, Fargher L, Quesadas-Rojas M, et al. 2018. Environmental exposure of children to toxic trace elements (Hg, Cr, As) in an urban area of Yucatan, Mexico: Water, blood, and urine levels. Bulletin of Environmental Contamination and Toxicology, 100: 620-626. doi:  10.1007/s00128-018-2306-8
    Boopathy R, Kulpa CF, Manning J. 1998. Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria: A review. Bioresource Technology, 63(1): 81-89. doi:  10.1016/S0960-8524(97)00083-7
    Cao WG, Chen NX, Zhang YL, et al. 2014. Distribution of arsenic in sediment of Hangjinhou Bannerlinhe transect in Hetao Basin, North China. Journal of Groundwater Science and Engineering, 2(4): 87-96.
    Chen C, Liu L, Li YX, et al. 2021. Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co3O4-Y2O3 and peroxymonosulfate. Journal of Hazardous Materials, 407: 124559. doi:  10.1016/j.jhazmat.2020.124559
    Chen GW, Ke ZC, Liang TF, et al. 2016. Shewanella oneidensis MR-1-induced Fe(Ⅲ) reduction facilitates roxarsone transformation. PLoS ONE, 11(4): e0154017. doi:  10.1371/journal.pone.0154017
    Chen GW, Xu RD, Liu L, et al. 2018. Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells. Applied Microbiology and Biotechnology, 102: 8093-8106. doi:  10.1007/s00253-018-9212-1
    Chen J, Rosen BP. 2016. Organoarsenical biotransformations by Shewanella putrefaciens. Environmental Science & Technology, 50(15): 7956-7963. doi:  10.1021/acs.est.6b00235
    Chen J, Zhang J, Rosen BP. 2019. Role of arsEFG in roxarsone and nitarsone detoxification and resistance. Environmental Science & Technology, 53(11): 6182-6191. doi:  10.1021/acs.est.9b01187
    Chen N, Wan YC, Zhan GM, et al. 2020. Simulated solar light driven roxarsone degradation and arsenic immobilization with hematite and oxalate. Chemical Engineering Journal, 384: 123254. doi:  10.1016/j.cej.2019.123254
    Chen CM, Kukkadapu RK, Lazareva O, et al. 2017. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and mössbauer spectroscopies. Environmental Science & Technology, 51(14): 7903-7912. doi:  10.1021/acs.est.7b00700
    Datta R, Sarkar D, Sharma S, et al. 2006. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: An incubation study. Science of The Total Environment, 372(1): 39-48. doi:  10.1016/j.scitotenv.2006.08.003
    European Commission (EC), 1999. Council Directive 1999/29/EC of 22 April 1999 on the undesirable substances and products in animal nutrition.
    Fisher E, Dawson AM, Polshyna G, et al. 2008. Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Annals of the New York Academy of Sciences, 1125: 230-241. doi:  10.1196/annals.1419.006
    Fu QL, He JZ, Gong H, et al. 2016. Extraction and speciation analysis of roxarsone and its metabolites from soils with different physicochemical properties. Journal of Soils and Sediments, 16: 1557-1568. doi:  10.1007/s11368-015-1344-7
    Fu YR, Chen ML, Bi XY, et al. 2011. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environmental Pollution, 159(7): 1757-1762. doi:  10.1016/j.envpol.2011.04.018
    Gorontzy T, Kuver J, Blotevogel KH, 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions. Microbiology, 139(6): 1331-1336. DOI: 10.1009/00221287-139-6-1331.
    Han JC, Zhang F, Cheng L, et al. 2017. Rapid release of arsenite from roxarsone bioreduction by exoelectrogenic bacteria. Environmental Science & Technology Letters, 4: 350-355. doi:  10.1021/acs.estlett.7b00227
    Hu YN, Cheng HF, Tao S, et al. 2019. China’s ban on phenylarsonic feed additives, a major step toward reducing the human and ecosystem health risk from arsenic. Environmental Science & Technology, 53: 12177-12187. doi:  10.1021/acs.est.9b04296
    Huang K, Peng HY, Gao F, et al. 2019. Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. Environmental Pollution, 247: 482-487. doi:  10.1016/j.envpol.2019.01.076
    Konkel L. 2016. Organoarsenic drugs over time: The pharmacokinetics of roxarsone in chicken meat. Environmental Health Perspectives, 124(8): 50. doi:  10.1289/ehp.124-A150
    Kowalski LM, Reid WM. 1975. Effects of roxarsone on pigmentation and coccidiosis in broilers. Poultry Science, 54(5): 1544-1549. doi:  10.3382/ps.0541544
    Li YS, Liu YC, Zhang ZJ, et al. 2020. Identification of an anaerobic bacterial consortium that degrades roxarsone. MicrobiologyOpen, 9(4): e1003. doi:  10.1002/mbo3.1003
    Liang TF, Ke ZC, Chen Q, et al. 2014. Degradation of roxarsone in a silt loam soil and its toxicity assessment. Chemosphere, 112: 128-133. doi:  10.1016/j.chemosphere.2014.03.103
    Liu YC, Li YS, Zhang ZJ, et al. 2017a. Distribution of arsenic compounds in vadose zone and groundwater around the chicken farm in Lubei Plain. South-to-North Water Transfers and Water Science & Technology, 15(3): 86-93. (in Chinese) doi:  10.13476/j.cnki.nsbdqk.2017.03.015
    Liu YC, Zhang ZJ, Li YS, et al. 2017b. Response of microbial communities to roxarsone under different culture conditions. Canadian Journal of Microbiology, 63: 661-670. doi:  10.1139/cjm-2016-0652
    Liu YC, Tian X, Cao SW, et al. 2021. Pollution characteristics and health risk assessment of arsenic transformed from feed additive organoarsenicals around chicken farms on the North China Plain. Chemosphere, 278: 130438. doi:  10.1016/j.chemosphere.2021.130438
    Masscheleyn PH, Delaune RD, Patrick WH. 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 25(8): 1414-1419. doi:  10.1021/es00020a008
    Ministry of Agriculture of the People’s Republic of China. 2018. Bulletin No. 2638: Regulations on the use of feed additives.
    Mondal NK. 2020. Prevalence of arsenic in chicken feed and its contamination pattern in different parts of chicken flesh: a market basket study. Environmental Monitoring and Assessment, 192(9): 590. doi:  10.1007/s10661-020-08558-x
    Morrison JL. 1969. Distribution of arsenic from poultry litter in broiler chickens, soil, and crops. Journal of Agricultural and Food Chemistry, 17(6): 1288-1290. doi:  10.1021/jf60166a018
    Nachman KE, Graham JP, Price LB, et al. 2005. Arsenic: A roadblock to potential animal waste management solutions. Environmental Health Perspectives, 113(9): 1123-1124. doi:  10.1289/ehp.7834
    Rahman MA, Hogan B, Duncan E, et al. 2014. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorellasp. CE-35). Ecotoxicology and Environmental Safety, 106(1): 126-135. doi:  10.1016/j.ecoenv.2014.03.004
    Sarkar D, Makris KC, Parra-Noonan MT, et al. 2007. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environment International, 33(2): 164-169. doi:  10.1016/j.envint.2006.09.004
    Stolz JF, Perera E, Kilonzo B, et al. 2007. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environmental Science & Technology, 41(3): 818-823. doi:  10.1021/es061802i
    Tang R, Yuan SJ, Wang YL, et al. 2020. Arsenic volatilization in roxarsone-loaded digester: Insight into the main factors and arsM genes. Science of The Total Environment, 711: 135123. doi:  10.1016/j.scitotenv.2019.135123
    U. S. Food and Drug Administration. 2013. FDA’s response to the citizen petition. Food and Drug Administration:Silver Spring: MD.FDA-2009-p-0594.
    Wu SS, Yang T, Mai JM, et al. 2022. Enhanced removal of organoarsenic by chlorination: Kinetics, effect of humic acid, and adsorbable chlorinated organoarsenic. Journal of Hazardous Materials, 422: 126820. doi:  10.1016/j.jhazmat.2021.126820
    Yang T, Wu SS, Liu CP, et al. 2021. Efficient degradation of organoarsenic by UV/chlorine treatment: Kinetics, mechanism, enhanced arsenic removal, and cytotoxicity. Environmental Science & Technology, 55: 2037-2047. doi:  10.1021/acs.est.0c05084
    Yao LX, Li GL, Dang Z, et al. 2009. Arsenic speciation in turnip as affected by application of chicken manure bearing roxarsone and its metabolites. Plant Soil, 316: 117-124. doi:  10.1007/s11104-008-9764-4
    Yao LX, Huang LX, He ZH, et al. 2016. Delivery of roxarsone via chicken diet→chicken→chicken manure→soil→rice plant. Science of The Total Environment, 566-567: 1152-1158. doi:  10.1016/j.scitotenv.2016.05157
    Yao LX, Huang LX, Bai CH, et al. 2017. Soil calcium significantly promotes uptake of inorganic arsenic by garland chrysanthemum (ChrysanthemumL coronarium) fertilized with chicken manure bearing roxarsone and its metabolites. Environmental Science and Pollution Research, 24: 16429-16439. doi:  10.1007/s11356-017-9242-8
    Yao LX, Huang LX, Bai CH, et al. 2019a. Effect of roxarsone metabolites in chicken manure on soil biological property. Ecotoxicology and Environmental Safety, 171: 493-501. doi:  10.1016/j.ecoenv.2019.01.017
    Yao LX, Carey MP, Zhong JW, et al. 2019b. Soil attribute regulates assimilation of roxarsone metabolites by rice (Oryza sativa L). Ecotoxicology and Environmental Safety, 184: 109660. doi:  10.1016/j.ecoenv.2019.109660
    Zhan L, Xia ZW, Xu ZM, et al. 2021. Study on the remediation of tetracycline antibiotics and roxarsone contaminated soil. Environmental Pollution, 271: 116312. doi:  10.1016/j.envpol.2020.116312
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office.

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

  • Relative Articles

    [1] Chao Song, Man Liu, Qiu-yao Dong, Lin Zhang, Pan Wang, Hong-yun Chen, Rong Ma, 2022: Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition, Journal of Groundwater Science and Engineering, 10, 19-32.  doi: 10.19637/j.cnki.2305-7068.2022.01.003
    [2] Mehdi Bahrami, Elmira Khaksar, Elahe Khaksar, 2020: Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243.  doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [3] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [4] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [5] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui, 2017: Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [6] ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [7] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng, 2015: Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [8] CAO Wen-geng, CHEN Nan-xiang, ZHANG Yi-long, DONG Qiu-yao, 2014: Distribution of arsenic in sediment of Hangjinhou Banner- Linhe transect in Hetao Basin, North China, Journal of Groundwater Science and Engineering, 2, 87-96.
    [9] Do Van Binh, 2013: Source and Formation of the Arsenic in Ground Water in Hanoi , Vietnam, Journal of Groundwater Science and Engineering, 1, 102-108.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (1150) PDF downloads(34) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint