• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Demisse HS, Ayalew AT, Ayana MT, et al. 2021. Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia. Journal of Groundwater Science and Engineering, 9(4): 317-325 doi:  10.19637/j.cnki.2305-7068.2021.04.005
Citation: Demisse HS, Ayalew AT, Ayana MT, et al. 2021. Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia. Journal of Groundwater Science and Engineering, 9(4): 317-325 doi:  10.19637/j.cnki.2305-7068.2021.04.005

Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia

doi: 10.19637/j.cnki.2305-7068.2021.04.005
More Information
  • Corresponding author: tklohani@gmail.com
  • Received Date: 2021-05-31
  • Accepted Date: 2021-10-22
  • Publish Date: 2021-12-15
  • Characteristics of ungauged catchments can be studied from the hydrological model parameters of gauged catchments. In this research, discharge prediction was carried out in ungauged catchments using HEC-HMS in the central Omo-Gibe basin. Linear regression, spatial proximity, area ratio, and sub-basin mean were amalgamated for regionalization. The regional model parameters of the gauged catchment and physical characteristics of ungauged catchments were collated together to develop the equations to predict discharge from ungauged catchments. From the sensitivity analysis, crop coefficient (CC), storage coefficient (R), constant rate (CR), and time of concentration (TC) are found to be more sensitive than others. The model efficiency was evaluated using Nash–Sutcliffe Efficiency (NSE) which was greater than 0.75, varying between −10% and +10% and the coefficient of determination (R2) was approximated to be 0.8 during the calibration and validation period. The model parameters in ungauged catchments were determined using the regional model (linear regression), sub-basin mean, area ratio, and spatial proximity methods, and the discharge was simulated using the HEC-HMS model. Linear regression was used in the prediction where p-value ≤ 0.1, determination coefficient (R2) = 0.91 for crop coefficient (CC) and 0.99 for maximum deficit (MD). Constant rate (CR), maximum storage (MS), initial storage (IS), storage coefficient (R), and time of concentration (TC) were obtained. The result is that an average of 30 m3/s and 15 m3/s as the maximum monthly simulated flow for ungauged sub-catchments, i.e. Denchiya and Mansa of the main river basin .
  • 加载中
  • Abebe NA, Ogden FL, Pradhan, NR. 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation. Journal of Hydrology, 389: 301-310. doi:  10.1016/j.jhydrol.2010.06.007
    Arsenault R, Breton-Dufour M, Poulin A, et al. 2019. Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico. Hydrological Sciences Journal, 64(11): 1297-1311. doi:  10.1080/02626667.2019.1639716
    Bao Z, Zhang J, Liu J, et al. 2012. Comparison of regionalization approaches based on regression and similarity for predictions in Ungauged catchments under multiple hydro-climatic conditions. Journal of Hydrology, 466-467: 37-46
    Barbarossa V, Huijbregts MAJ, Hendriks AJ, et al. 2017. Developing and testing a global-scale regression model to quantify mean annual stream-flow. Journal of Hydrology, 544: 479-487. doi:  10.1016/j.jhydrol.2016.11.053
    Blöschl, G. 2005. Rainfall runoff modeling of ungauged catchments In M. L. Anderson, ed. Encyclopedia of hydrological sciences UK: John Wiley & Sons: 2061– 2080.
    Donnelly C, Andersson JCM, Arheimer B. 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal, 61(2): 255-273. doi:  10.1080/02626667.2015.1027710
    Goswami M, Connor KM, Bhattarai KP, et al. 2005. Assessing the performance of eight real-time updating models and procedure for the Brosna River. Hydrology and the Earth System Sciences, 9(4): 394-411. doi:  10.5194/hess-9-394-2005
    Hailegeorgis TT, Abdella YS, Alfredsen, K, et al. 2015. Evaluation of regionalization methods for hourly continuous streamflow simulation using distributed models in Boreal Catchments. Journal of Hydrologic Engineering, 1-20: 04015028. doi:  10.1061/(ASCE)HE.1943-5584.0001218
    Ibrahim B, Wisser D, Barry B, et al. 2015. Hydrological predictions for small ungauged watersheds in the Sudanian zone of the Volta basin in West Africa. Journal of Hydrology: Regional Studies, 4: 386-397. doi:  10.1016/j.ejrh.2015.07.007
    IHMS. 2006. Integrated Hydrological Modeling System Manual. Version 5.1.
    Javeed Y, Apoorva KV. 2015. Flow regionalization under limited data availability application of IHACRES in the Western Ghats. Aquatic Proceeding 4: (LCWRCOE) 2015: 933-941.
    Li H, Zhang Y, Zhou X. 2015. Predicting surface runoff from Catchment to Large Region. Advances in Meteorology: 1-13. doi:  10.1155/2015/720967
    Mazvimavi D. 2003. Estimation of flow characteristics of ungauged catchments: Case study in Zimbabwe. Wageningen Universiteit: 1-176.
    Merz R, Bloschl G. 2004. Regionalization of catchment model parameters. Journal of Hydrology, 287(1-4): 95-123. doi:  10.1016/j.jhydrol.2003.09.028
    Mosavi A, Golshan M, Choubin B. 2021. Fuzzy clustering and distributed model for streamflow estimation in ungauged watersheds. Scientific Reports, 11: 8243. doi:  10.1038/s41598-021-87691-0
    Nega H, Seleshi Y. 2021. Regionalization of mean annual flow for ungauged catchments in case of Abbay River Basin, Ethiopia. Modeling Earth Systems and Environment, 7: 341-350. doi:  10.1007/s40808-020-01033-z
    Oudin L, Andre´assian V, Perrin C, et al. 2008. Spatial proximity, physical similarity, regression and Ungauged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resources Research, 44: W03413. doi:  10.1029/2007WR006240
    Pinheiro VB, Naghettini M. 2013. Calibration of the parameters of a rainfall-runoff model in Ungauged basins using synthetic flow duration curves as estimated by regional analysis. Journal of Hydrologic Engineering, 18: 1617-1626. doi:  10.1061/(ASCE)HE.1943-5584.0000737
    Pool S, Viviroli D, Seibert J. 2017. Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration? Journal of Hydrology, 554: 613-622.
    Rajendran M, Gunawarden ERN, Dayawansa NDK. 2020. Runoff prediction in an ungauged catchment of Upper Deduru Oya Basin, Sri Lanka: A comparison of HEC-HMS and WEAP models. International Journal of Progressive Sciences and Technologies (IJPSAT), 18(2): 121-129.
    Roy S, Mistri B. 2013. Estimation of peak flood discharge for an Ungauged River: A case study of the Kunur River, West Bengal, Geography Journal, 214140: 11.
    Samuel J, Coulibaly P, Metcalfe RA. 2011. Metcalfe estimation of continuous stream flow in ontario ungauged basins: Comparison of regionalization methods. Journal of Hydrologic Engineering, 16(5): 447-459. doi:  10.1061/(ASCE)HE.1943-5584.0000338
    Sawicz K, Wagener Sivapalan TM, Troch PA, et al. 2011. Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology Earth Systems Sciences, 15(9): 2895-2911. doi:  10.5194/hess-15-2895-2011
    Sellami H, Jeunesse IL, Benabdallah S, et al. 2014. Uncertainty analysis in model parameters regionalization: A case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrology and Earth System Sciences, 18: 2393-2413. doi:  10.5194/hess-18-2393-2014
    Shoaib SA, Bardossy A, Wagener T, et al. 2013. A different light in predicting Ungauged Basins: Regionalization approach based on Eastern USA Catchments. Journal of Civil Engineering and Architecture, 7 (3) (64): 364-378.
    Sivapalan M, Takeuchi K, Franks SW, et al. 2003. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrologocal Sciences Journal, 48(6): 857-880. doi:  10.1623/hysj.48.6.857.51421
    Solomon SM. 2001. Climate change 2007-The physical science basis: Working group1 contribution to the fourth assessment report of the IPCC: (vol. 4). Cambridge University Press.
    Swain JB, Patra KC. 2019. Impact of catchment classification on streamflow regionalization in ungauged catchments. SN Applied Sciences 1: 456. doi:  10.1007/s42452-019-0476-6
    Tamalew C, Kemal A. 2016. Estimation of discharge for ungauged catchments using rainfall-runo model in Didessa Subbasin: The case of Blue Nile River. International Journal of Innovations in Engineering Research and Technology, 3(9): 62-72.
    Tesfalem A, Yan L, Sirak T, et al. 2021. Quantifying the regional water balance of the Ethiopian Rift Valley Lake basin using an uncertainty estimation framework. Hydrology and Earth Science System:1-25.
    Teutschbein C, Grabs T, Hjalmar L, et al. 2018. Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. Journal of Hydrology, 561: 160-178. doi:  10.1016/j.jhydrol.2018.03.060
    Wagener T, Wheater HS, Gupta HV. 2004. Rainfall-runoff modelling in gauged and ungauged catchments. London, Imperial College Press: 300.
    Wale A, Rientjes THM, Gieske ASM, et al. 2009. Ungauged catchment contributions to Lake Tana’s water balance. Hydrological Processes, 23(6): 3682-3692. doi:  10.1002/hyp.7284
    Zamoum S, Souag-Gamane, D. 2019. Monthly streamflow estimation in ungauged catchments of northern Algeria using regionalization of conceptual model parameters. Arabian Journal of Geosciences, 342: 12 (11).
    Zhang Y, Chiew FHS. 2009. Relative merits of different methods for runoff predictions in ungauged catchments. Water Resources Research, 45(7).
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office.

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

  • Relative Articles

    [1] Shuai-chao Wei, Feng Liu, Wei Zhang, Gui-ling Wang, Ruo-xi Yuan, Yu-zhong Liao, Xiao-xue Yan, 2022: Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province, Journal of Groundwater Science and Engineering, 10, 166-183.  doi: 10.19637/j.cnki.2305-7068.2022.02.006
    [2] Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208.  doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [3] Hong-bo HAO, Jie LV, Yan-mei CHEN, Chuan-zi WANG, Xiao-rui HUANG, 2021: Research advances in non-Darcy flow in low permeability media, Journal of Groundwater Science and Engineering, 9, 83-92.  doi: 10.19637/j.cnki.2305-7068.2021.01.008
    [4] Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291.  doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [5] Daneshfaraz Rasoul, Aminvash Ehsan, Esmaeli Reza, Sadeghfam Sina, Abraham John, 2020: Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions, Journal of Groundwater Science and Engineering, 8, 396-406.  doi: 10.19637/j.cnki.2305-7068.2020.04.009
    [6] ZHANG Bing, GAO Ye-xin, FENG Xin, ZHANG Ya-zhe, LIU Ji-chao, ZHANG Ying-ping, 2020: Experimental study on height simulation of capillary fringe, Journal of Groundwater Science and Engineering, 8, 108-117.  doi: 10.19637/j.cnki.2305-7068.2020.02.002
    [7] Chun-chao ZHANG, Xin-wei HOU, Xiang-quan LI, Zhen-xing WANG, Chun-lei GUI, Xue-feng ZUO, Jian-fei MA, Ming GAO, 2020: Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222.  doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [8] Feng LIU, Gui-ling WANG, Wei ZHANG, Chen YUE, Li-bo TAO, 2020: Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337.  doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [9] NAN Tian, GUO Si-jia, 2019: Influence of borehole quantity and distribution on lithology field simulation, Journal of Groundwater Science and Engineering, 7, 295-308.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001
    [10] GUO Chun-yan, CUI Ya-li, LIU Wen-na, CUI Xiang-xiang, FEI Yu-hong, 2018: Research on numerical simulation of the groundwater funnels restoration in Shijiazhuang, Journal of Groundwater Science and Engineering, 6, 126-135.
    [11] ZHANG Han-xiong, HU Xiao-nong, 2018: Simulation and analysis of Chloride concentration in Zhoushan reclamation area, Journal of Groundwater Science and Engineering, 6, 150-160.
    [12] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [13] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan, 2017: Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [14] ZHOU Xun, WANG Xiao-cui, CAO Qin, LONG Mi, ZHENG Yu-hui, GUO Juan, SHEN Xiao-wei, ZHANG Yu-qi, TA Ming-ming, CUI Xiang-fei, 2016: A discussion of up-flow springs, Journal of Groundwater Science and Engineering, 4, 279-283.
    [15] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li, 2016: Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [16] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [17] ZHANG Zhi-qiang, LI Hong-chao, WANG Yu-qing, ZHANG li-ye, WANG Ying, 2014: Application of Visual MODFLOW to simulation of migration in Cr6+ contaminated site, Journal of Groundwater Science and Engineering, 2, 28-35.
    [18] , 2014: The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [19] BAI Xi-qing, LIU Yan, 2014: Feasibility Analysis on Resuming Flow of Large Karst Spring in Heilongdong, Journal of Groundwater Science and Engineering, 2, 80-87.
    [20] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (366) PDF downloads(49) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint